ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the phase structure of two-color QCD at both real and imaginary chemical potentials mu, performing lattice simulations and analyzing the data with the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. Lattice QCD simulations are done on an 8^3 times 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. We test the analytic continuation of physical quantities from imaginary mu to real mu by comparing lattice QCD results calculated at real mu with the result of analytic function the coefficients of which are determined from lattice QCD results at imaginary mu. We also test the validity of the PNJL model by comparing model results with lattice QCD ones. The PNJL model is good in the deconfinement region, but less accurate in the transition and confinement regions. This problem is improved by introducing the baryon degree of freedom to the model. It is also found that the vector-type four-quark interaction is necessary to explain lattice data on the quark number density.
We propose a simple model with the Z_N symmetry in order to answer whether the symmetry is a good concept in QCD with light quark mass. The model is constructed by imposing the flavor-dependent twisted boundary condition (TBC) on the three-flavor Pol yakov-loop extended Nambu-Jona-Lasinio model. In the model, the Z_N symmetry is preserved below some temperature T_c, but spontaneously broken above T_c. Dynamics of the simple model is similar to that of the original PNJL model without the TBC, indicating that the Z_N symmetry is a good concept. We also investigate the interplay between the Z_N symmetry and the emergence of the quarkyonic phase.
We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the chiral transformation. In the Lagrangian, the P-odd mass term as a cause of the sign problem is minimized. Additionally, we investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-vacuum effects make the chiral transition sharper. We finally investigate theta dependence of the transition temperature and compare with the result of the pure gauge lattice simulation with imaginary theta parameter.
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-va cuum effects make the chiral transition sharper. For large theta-vacuum angle the chiral transition becomes first order even if the quark number chemical potential is zero, when the entanglement coupling between the chiral condensate and the Polyakov loop is taken into account. We finally propose a way of circumventing the sign problem on lattice QCD with finite theta.
We draw the three-flavor phase diagram as a function of light- and strange-quark masses for both zero and imaginary quark-number chemical potential, using the Polyakov-loop extended Nambu-Jona-Lasinio model with an effective four-quark vertex dependi ng on the Polyakov loop. The model prediction is qualitatively consistent with 2+1 flavor lattice QCD prediction at zero chemical potential and with degenerate three-flavor lattice QCD prediction at imaginary chemical potential.
We extend the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model by introducing an effective four-quark vertex depending on Polyakov loop. The effective vertex generates entanglement interactions between Polyakov loop and chiral condensate. The n ew model is consistent with lattice QCD data at imaginary quark-number chemical potential and real and imaginary isospin chemical potentials, particularly on strong correlation between the chiral and deconfinement transitions and also on the quark-mass dependence of the order of the Roberge-Weiss endpoint predicted by lattice QCD very lately. We investigate an influence of the entanglement interactions on a location of the tricritical point at real isospin chemical potential and a location of the critical endpoint at real quark-number chemical potential.
The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, mu_B and mu_{iso}, by using the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type ei ght-quark interaction can reproduce lattice QCD data at not only mu_{iso}=mu_B=0 but also mu_{iso}>0 and mu_B=0. In the mu_{iso}-mu_{B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the mu_B-T plane at mu_{iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the mu_{iso}-T plane at mu_B=0 as mu_{iso} increases. The thermodynamics at small T is controlled by sqrt{sigma^2+pi^2} defined by the chiral and pion condensates, sigma and pi.
We show, in general, that when a discontinuity of either zeroth-order or first-order takes place in an order parameter such as the chiral condensate, discontinuities of the same order emerge in other order parameters such as the Polyakov loop. A cond ition for the coexistence theorem to be valid is clarified. Consequently, only when the condition breaks down, zeroth-order and first-order discontinuities can coexist on a phase boundary. We show with the Polyakov-loop extended Nambu--Jona-Lasinio model that such a type of coexistence is realized in the imaginary chemical potential region of the QCD phase diagram. We also present examples of coexistence of the same-order discontinuities in the real chemical potential region.
Effects of the vector-type four-quark interaction on QCD phase structure are investigated in the imaginary chemical potential region, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with the extended Z3 symmetry. In the course to this end, we clarify analytically the Roberge-Weiss periodicity and symmetry properties of various quantities under the existence of a vector-type four-quark interaction. In the imaginary chemical potential region, the chiral condensate and the quark number density are sensitive to the strength of the interaction. Based on this result, we propose a possibility to determine the strength of the vector-type interaction, which largely affects QCD phase structure in the real chemical potential region, by comparing the results of lattice simulations and effective model calculations in the imaginary chemical potential region.
Phase transitions in the imaginary chemical potential region are studied by the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model that possesses the extended Z3 symmetry. The extended Z3 invariant quantities such as the partition function, the c hiral condensate and the modifed Polyakov loop have the Roberge-Weiss (RW) periodicity. There appear four types of phase transitions; deconfinement, chiral, Polykov-loop RW and chiral RW transitions. The orders of the chiral and deconfinement transitions depend on the presence or absence of current quark mass, but those of the Polykov-loop RW and chiral RW transitions do not. The scalar-type eightquark interaction newly added in the model makes the chiral transition line shift to the vicinity of the deconfiment transition line.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا