ﻻ يوجد ملخص باللغة العربية
We propose a simple model with the Z_N symmetry in order to answer whether the symmetry is a good concept in QCD with light quark mass. The model is constructed by imposing the flavor-dependent twisted boundary condition (TBC) on the three-flavor Polyakov-loop extended Nambu-Jona-Lasinio model. In the model, the Z_N symmetry is preserved below some temperature T_c, but spontaneously broken above T_c. Dynamics of the simple model is similar to that of the original PNJL model without the TBC, indicating that the Z_N symmetry is a good concept. We also investigate the interplay between the Z_N symmetry and the emergence of the quarkyonic phase.
We propose a model that explains the fermion mass hierarchy by the Froggatt-Nielsen mechanism with a discrete $Z_N^F$ symmetry. As a concrete model, we study a supersymmetric model with a single flavon coupled to the minimal supersymmetric Standard M
We propose a model having a gauged $SU(2)$ symmetry associated with the second and third generations of leptons, dubbed $SU(2)_{mutau}$, of which $U(1)_{L_mu-L_tau}$ is an Abelian subgroup. In addition to the Standard Model fields, we introduce two t
We propose new backgrounds of extra dimensions to lead to four-dimensional chiral models with three generations of matter fermions, that is $T^2/Z_N$ twisted orbifolds with magnetic fluxes. We consider gauge theory on six-dimensional space-time, whic
A simple Standard Model Extension based on $T_7$ flavor symmetry which accommodates lepton mass and mixing with non-zero $theta_{13}$ and CP violation phase is proposed. At the tree- level, the realistic lepton mass and mixing pattern is derived thro
We present a renormalizable fermion mass model based on the symmetry $Q_4$ that accommodates all fermion masses and mixing angles in both the quark and lepton sectors. It requires the presence of only four SU(2) doublet scalar fields transforming non