ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Haibo Qi , Yuhan Wang , Xinyu Liu 2021
In this paper, a 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection. In the application of clinical medicine, lung CT images are utilized by practitioners to determine wh ether a patient is infected with coronavirus. However, there are some laybacks can be considered regarding to this diagnostic method, such as time consuming and low accuracy. As a relatively large organ of human body, important spatial features would be lost if the lungs were diagnosed utilizing two dimensional slice image. Therefore, in this paper, a deep learning model with 3D image was designed. The 3D image as input data was comprised of two-dimensional pulmonary image sequence and from which relevant coronavirus infection 3D features were extracted and classified. The results show that the test set of the 3D model, the result: f1 score of 0.8379 and AUC value of 0.8807 have been achieved.
191 - Yuhan Wang , Xu Chen , Junwei Zhu 2021
In this work, we propose a high fidelity face swapping method, called HifiFace, which can well preserve the face shape of the source face and generate photo-realistic results. Unlike other existing face swapping works that only use face recognition m odel to keep the identity similarity, we propose 3D shape-aware identity to control the face shape with the geometric supervision from 3DMM and 3D face reconstruction method. Meanwhile, we introduce the Semantic Facial Fusion module to optimize the combination of encoder and decoder features and make adaptive blending, which makes the results more photo-realistic. Extensive experiments on faces in the wild demonstrate that our method can preserve better identity, especially on the face shape, and can generate more photo-realistic results than previous state-of-the-art methods.
Transition metal dichalcogenides (TMDs) are known to support complex excitonic states. Revealing the differences in relaxation dynamics among different excitonic species and elucidating the transition dynamics between them may provide important guide lines for designing TMD-based excitonic devices. Combining photoluminescence (PL) and reflectance contrast measurements with ultrafast pump-probe spectroscopy under cryogenic temperatures, we herein study the relaxation dynamics of neutral and charged excitons in a back-gate-controlled monolayer device. Pump-probe results reveal quite different relaxation dynamics of excitonic states under different interfacial conditions: while neutral excitons experience much longer lifetime than trions in monolayer WS2, the opposite is true in the WS2/h-BN heterostructure. It is found that the insertion of h-BN layer between the TMD monolayer and the substrate has a great influence on the lifetimes of different excitonic states. The h-BN flakes can not only screen the effects of impurities and defects at the interface, but also help establish a non-radiative transition from neutral excitons to trions to be the dominant relaxation pathway, under cryogenic temperature. Our findings highlight the important role interface may play in governing the transient properties of carriers in 2D semiconductors, and may also have implications for designing light-emitting and photo-detecting devices based on TMDs.
Van der Waals (vdW) heterostructures constructed with two-dimensional (2D) materials have attracted great interests, due to their fascinating properties and potential for novel applications. While earlier efforts have advanced the understanding of th e ultrafast cross-layer charge transfer process in 2D heterostructures, mechanisms for the interfacial photocarrier recombination remain, to a large extent, unclear. Here, we investigate a heterostructure comprised of black phosphorus (BP) and molybdenum disulfide (MoS2), with a type-II band alignment. Interestingly, it is found that the photo-generated electrons in MoS2 (transferred from BP) exhibit an ultrafast lifetime of about 5 ps, significantly shorter than those of the constituent materials. By corroborating with the relaxation of photo-excited holes in BP, it is revealed that the ultrafast time constant is as a result of efficient Langevin recombination, where the high hole mobility of BP facilitates a large recombination coefficient (approximately 2x10^-10 m^2/s). In addition, broadband transient absorption spectroscopy confirms that the hot electrons transferred to MoS2 distribute over a broad energy range following an ultrafast thermalization. The rate of the interlayer Langevin recombination is found to exhibit no energy level dependence. Our findings provide essential insights into the fundamental photo-physics in type-II 2D heterostructures, and also provide useful guidelines for customizing photocarrier lifetimes of BP for high-speed photo-sensitive devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا