ترغب بنشر مسار تعليمي؟ اضغط هنا

Singing voice conversion (SVC) is one promising technique which can enrich the way of human-computer interaction by endowing a computer the ability to produce high-fidelity and expressive singing voice. In this paper, we propose DiffSVC, an SVC syste m based on denoising diffusion probabilistic model. DiffSVC uses phonetic posteriorgrams (PPGs) as content features. A denoising module is trained in DiffSVC, which takes destroyed mel spectrogram produced by the diffusion/forward process and its corresponding step information as input to predict the added Gaussian noise. We use PPGs, fundamental frequency features and loudness features as auxiliary input to assist the denoising process. Experiments show that DiffSVC can achieve superior conversion performance in terms of naturalness and voice similarity to current state-of-the-art SVC approaches.
This paper proposes VARA-TTS, a non-autoregressive (non-AR) text-to-speech (TTS) model using a very deep Variational Autoencoder (VDVAE) with Residual Attention mechanism, which refines the textual-to-acoustic alignment layer-wisely. Hierarchical lat ent variables with different temporal resolutions from the VDVAE are used as queries for residual attention module. By leveraging the coarse global alignment from previous attention layer as an extra input, the following attention layer can produce a refined version of alignment. This amortizes the burden of learning the textual-to-acoustic alignment among multiple attention layers and outperforms the use of only a single attention layer in robustness. An utterance-level speaking speed factor is computed by a jointly-trained speaking speed predictor, which takes the mean-pooled latent variables of the coarsest layer as input, to determine number of acoustic frames at inference. Experimental results show that VARA-TTS achieves slightly inferior speech quality to an AR counterpart Tacotron 2 but an order-of-magnitude speed-up at inference; and outperforms an analogous non-AR model, BVAE-TTS, in terms of speech quality.
This paper presents FastSVC, a light-weight cross-domain singing voice conversion (SVC) system, which can achieve high conversion performance, with inference speed 4x faster than real-time on CPUs. FastSVC uses Conformer-based phoneme recognizer to e xtract singer-agnostic linguistic features from singing signals. A feature-wise linear modulation based generator is used to synthesize waveform directly from linguistic features, leveraging information from sine-excitation signals and loudness features. The waveform generator can be trained conveniently using a multi-resolution spectral loss and an adversarial loss. Experimental results show that the proposed FastSVC system, compared with a computationally heavy baseline system, can achieve comparable conversion performance in some scenarios and significantly better conversion performance in other scenarios. Moreover, the proposed FastSVC system achieves desirable cross-lingual singing conversion performance. The inference speed of the FastSVC system is 3x and 70x faster than the baseline system on GPUs and CPUs, respectively.
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach, which utilizes text supervision during training. In this approach, we combine a bottle-neck feature extractor (BNE) with a s eq2seq synthesis module. During the training stage, an encoder-decoder-based hybrid connectionist-temporal-classification-attention (CTC-attention) phoneme recognizer is trained, whose encoder has a bottle-neck layer. A BNE is obtained from the phoneme recognizer and is utilized to extract speaker-independent, dense and rich spoken content representations from spectral features. Then a multi-speaker location-relative attention based seq2seq synthesis model is trained to reconstruct spectral features from the bottle-neck features, conditioning on speaker representations for speaker identity control in the generated speech. To mitigate the difficulties of using seq2seq models to align long sequences, we down-sample the input spectral feature along the temporal dimension and equip the synthesis model with a discretized mixture of logistic (MoL) attention mechanism. Since the phoneme recognizer is trained with large speech recognition data corpus, the proposed approach can conduct any-to-many voice conversion. Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity. Ablation studies are conducted to confirm the effectiveness of feature selection and model design strategies in the proposed approach. The proposed VC approach can readily be extended to support any-to-any VC (also known as one/few-shot VC), and achieve high performance according to objective and subjective evaluations.
Voice conversion (VC) techniques aim to modify speaker identity of an utterance while preserving the underlying linguistic information. Most VC approaches ignore modeling of the speaking style (e.g. emotion and emphasis), which may contain the factor s intentionally added by the speaker and should be retained during conversion. This study proposes a sequence-to-sequence based non-parallel VC approach, which has the capability of transferring the speaking style from the source speech to the converted speech by explicitly modeling. Objective evaluation and subjective listening tests show superiority of the proposed VC approach in terms of speech naturalness and speaker similarity of the converted speech. Experiments are also conducted to show the source-style transferability of the proposed approach.
Emotional voice conversion (EVC) is one way to generate expressive synthetic speech. Previous approaches mainly focused on modeling one-to-one mapping, i.e., conversion from one emotional state to another emotional state, with Mel-cepstral vocoders. In this paper, we investigate building a multi-target EVC (MTEVC) architecture, which combines a deep bidirectional long-short term memory (DBLSTM)-based conversion model and a neural vocoder. Phonetic posteriorgrams (PPGs) containing rich linguistic information are incorporated into the conversion model as auxiliary input features, which boost the conversion performance. To leverage the advantages of the newly emerged neural vocoders, we investigate the conditional WaveNet and flow-based WaveNet (FloWaveNet) as speech generators. The vocoders take in additional speaker information and emotion information as auxiliary features and are trained with a multi-speaker and multi-emotion speech corpus. Objective metrics and subjective evaluation of the experimental results verify the efficacy of the proposed MTEVC architecture for EVC.
Emotional Voice Conversion, or emotional VC, is a technique of converting speech from one emotion state into another one, keeping the basic linguistic information and speaker identity. Previous approaches for emotional VC need parallel data and use d ynamic time warping (DTW) method to temporally align the source-target speech parameters. These approaches often define a minimum generation loss as the objective function, such as L1 or L2 loss, to learn model parameters. Recently, cycle-consistent generative adversarial networks (CycleGAN) have been used successfully for non-parallel VC. This paper investigates the efficacy of using CycleGAN for emotional VC tasks. Rather than attempting to learn a mapping between parallel training data using a frame-to-frame minimum generation loss, the CycleGAN uses two discriminators and one classifier to guide the learning process, where the discriminators aim to differentiate between the natural and converted speech and the classifier aims to classify the underlying emotion from the natural and converted speech. The training process of the CycleGAN models randomly pairs source-target speech parameters, without any temporal alignment operation. The objective and subjective evaluation results confirm the effectiveness of using CycleGAN models for emotional VC. The non-parallel training for a CycleGAN indicates its potential for non-parallel emotional VC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا