ﻻ يوجد ملخص باللغة العربية
Emotional Voice Conversion, or emotional VC, is a technique of converting speech from one emotion state into another one, keeping the basic linguistic information and speaker identity. Previous approaches for emotional VC need parallel data and use dynamic time warping (DTW) method to temporally align the source-target speech parameters. These approaches often define a minimum generation loss as the objective function, such as L1 or L2 loss, to learn model parameters. Recently, cycle-consistent generative adversarial networks (CycleGAN) have been used successfully for non-parallel VC. This paper investigates the efficacy of using CycleGAN for emotional VC tasks. Rather than attempting to learn a mapping between parallel training data using a frame-to-frame minimum generation loss, the CycleGAN uses two discriminators and one classifier to guide the learning process, where the discriminators aim to differentiate between the natural and converted speech and the classifier aims to classify the underlying emotion from the natural and converted speech. The training process of the CycleGAN models randomly pairs source-target speech parameters, without any temporal alignment operation. The objective and subjective evaluation results confirm the effectiveness of using CycleGAN models for emotional VC. The non-parallel training for a CycleGAN indicates its potential for non-parallel emotional VC.
Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consist
Emotional voice conversion (EVC) is one way to generate expressive synthetic speech. Previous approaches mainly focused on modeling one-to-one mapping, i.e., conversion from one emotional state to another emotional state, with Mel-cepstral vocoders.
Traditional voice conversion(VC) has been focused on speaker identity conversion for speech with a neutral expression. We note that emotional expression plays an essential role in daily communication, and the emotional style of speech can be speaker-
Mel-frequency filter bank (MFB) based approaches have the advantage of learning speech compared to raw spectrum since MFB has less feature size. However, speech generator with MFB approaches require additional vocoder that needs a huge amount of comp
So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can