ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we design optimal probe states for detector estimation based on the minimum upper bound of the mean square d error (UMSE) and the maximum robustness. We establish the minimum UMSE and the minimum condition number for quantum detectors and provide concrete examples that can achieve optimal detector tomography. In order to enhance estimation precision, we also propose a two-step adaptive detector tomography algorithm and investigate how this adaptive strategy can be used to achieve efficient estimation of quantum detectors. Moreover, the superposition of coherent states are used as probe states for quantum detector tomography and the estimation error is analyzed. Numerical results demonstrate the effectiveness of both the proposed optimal and adaptive quantum detector tomography methods.
We introduce a theoretical framework for resource-efficient characterization and control of non-Markovian open quantum systems, which naturally allows for the integration of given, experimentally motivated, control capabilities and constraints. This is achieved by developing a transfer filter-function formalism based on the general notion of a frame and by appropriately tying the choice of frame to the available control. While recovering the standard frequency-based filter-function formalism as a special instance, this control-adapted generalization affords intrinsic flexibility and, crucially, it permits an efficient representation of the relevant control matrix elements and dynamical integrals if an appropriate finite-size frame condition is obeyed. Our frame-based formulation overcomes important limitations of existing approaches. In particular, we show how to implement quantum noise spectroscopy in the presence of nonstationary noise sources, and how to effectively achieve control-driven model reduction for noise-optimized prediction and quantum gate design.
103 - Qi Yu , Yuanlong Wang , Daoyi Dong 2020
In this paper, we consider the dynamical modeling of a class of quantum network systems consisting of qubits. Qubit probes are employed to measure a set of selected nodes of the quantum network systems. For a variety of applications, a state space mo del is a useful way to model the system dynamics. To construct a state space model for a quantum network system, the major task is to find an accessible set containing all of the operators coupled to the measurement operators. This paper focuses on the generation of a proper accessible set for a given system and measurement scheme. We provide analytic results on simplifying the process of generating accessible sets for systems with a time-independent Hamiltonian. Since the order of elements in the accessible set determines the form of state space matrices, guidance is provided to effectively arrange the ordering of elements in the state vector. Defining a system state according to the accessible set, one can develop a state space model with a special pattern inherited from the system structure. As a demonstration, we specifically consider a typical 1D-chain system with several common measurements, and employ the proposed method to determine its accessible set.
144 - Qi Yu , Yuanlong Wang , Daoyi Dong 2020
Quantum sensors may provide extremely high sensitivity and precision to extract key information in a quantum or classical physical system. A fundamental question is whether a quantum sensor is capable of uniquely inferring unknown parameters in a sys tem for a given structure of the quantum sensor and admissible measurement on the sensor. In this paper, we investigate the capability of a class of quantum sensors which consist of either a single qubit or two qubits. A quantum sensor is coupled to a spin chain system to extract information of unknown parameters in the system. With given initialisation and measurement schemes, we employ the similarity transformation approach and the Grobner basis method to prove that a single-qubit quantum sensor cannot effectively estimate the unknown parameters in the spin chain system while the two-qubit quantum sensor can. The work demonstrates that it is a feasible method to enhance the capability of quantum sensors by increasing the number of qubits in the quantum sensors for some practical applications.
Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, a novel quantum detector tomography method is proposed. First, a series of different probe states are used to generate measurement data. Then, using constrained linear regression estimation, a stage-1 estimation of the detector is obtained. Finally, the positive semidefinite requirement is added to guarantee a physical stage-2 estimation. This Two-stage Estimation (TSE) method has computational complexity $O(nd^2M)$, where $n$ is the number of $d$-dimensional detector matrices and $M$ is the number of different probe states. An error upper bound is established, and optimization on the coherent probe states is investigated. We perform simulation and a quantum optical experiment to testify the effectiveness of the TSE method.
The identifiability of a system is concerned with whether the unknown parameters in the system can be uniquely determined with all the possible data generated by a certain experimental setting. A test of quantum Hamiltonian identifiability is an impo rtant tool to save time and cost when exploring the identification capability of quantum probes and experimentally implementing quantum identification schemes. In this paper, we generalize the identifiability test based on the Similarity Transformation Approach (STA) in classical control theory and extend it to the domain of quantum Hamiltonian identification. We employ STA to prove the identifiability of spin-1/2 chain systems with arbitrary dimension assisted by single-qubit probes. We further extend the traditional STA method by proposing a Structure Preserving Transformation (SPT) method for non-minimal systems. We use the SPT method to introduce an indicator for the existence of economic quantum Hamiltonian identification algorithms, whose computational complexity directly depends on the number of unknown parameters (which could be much smaller than the system dimension). Finally, we give an example of such an economic Hamiltonian identification algorithm and perform simulations to demonstrate its effectiveness.
362 - Daoyi Dong , Yuanlong Wang 2018
This paper summarizes several recent developments in the area of estimation and robust control of quantum systems and outlines several directions for future research. Quantum state tomography via linear regression estimation and adaptive quantum stat e estimation are introduced and a Hamiltonian identification algorithm is outlined. Two quantum robust control approaches including sliding mode control and sampling-based learning control are illustrated.
119 - Bo Qi , Zhibo Hou , Yuanlong Wang 2015
Adaptive techniques have important potential for wide applications in enhancing precision of quantum parameter estimation. We present a recursively adaptive quantum state tomography (RAQST) protocol for finite dimensional quantum systems and experime ntally implement the adaptive tomography protocol on two-qubit systems. In this RAQST protocol, an adaptive measurement strategy and a recursive linear regression estimation algorithm are performed. Numerical results show that our RAQST protocol can outperform the tomography protocols using mutually unbiased bases (MUB) and the two-stage MUB adaptive strategy even with the simplest product measurements. When nonlocal measurements are available, our RAQST can beat the Gill-Massar bound for a wide range of quantum states with a modest number of copies. We use only the simplest product measurements to implement two-qubit tomography experiments. In the experiments, we use error-compensation techniques to tackle systematic error due to misalignments and imperfection of wave plates, and achieve about 100-fold reduction of the systematic error. The experimental results demonstrate that the improvement of RAQST over nonadaptive tomography is significant for states with a high level of purity. Our results also show that this recursively adaptive tomography method is particularly effective for the reconstruction of maximally entangled states, which are important resources in quantum information.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا