ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devi ces for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cut-off at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.
Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and inter-chip communications. Silicon-based EO modulators show sufficient figur es of merits regarding device footprint, speed, power consumption and modulation depth. However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties. Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cut-off frequency of 1.2 GHz.
Symmetry breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutr ality point. In a quantizing magnetic field electron interactions can cause spontaneous symmetry breaking within the spin and valley degrees of freedom, resulting in quantum Hall states (QHS) with complex order. Here we report fractional quantum Hall states (FQHS) in bilayer graphene which show phase transitions that can be tuned by a transverse electric field. This result provides a model platform to study the role of symmetry breaking in emergent states with distinct topological order.
We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical f ield and graphene sheet. Tuning of graphenes Fermi level up to 0.8 eV enables efficient control of its complex dielectric constant, which allows modulation of the cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. We also observe a controllable resonance wavelength shift close to 2 nm around a wavelength of 1570 nm and a Q factor modulation in excess of three. These observations allow cavity-enhanced measurements of the graphene complex dielectric constant under different chemical potentials, in agreement with a theoretical model of the graphene dielectric constant under gating. This graphene-based nanocavity modulation demonstrates the feasibility of high-contrast, low-power frequency-selective electro-optic nanocavity modulators in graphene-integrated silicon photonic chips.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا