ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential (electrostatic) surface waves in plasma half-space with degenerate electrons are studied using the quasi-classical mean-field kinetic model. The wave spectrum and the collisionless damping rate are obtained numerically for a wide range of w avelengths. In the limit of long wavelengths, the wave frequency $omega$ approaches the cold-plasma limit $omega=omega_p/sqrt{2}$ with $omega_p$ being the plasma frequency, while at short wavelengths, the wave spectrum asymptotically approaches the spectrum of zero-sound mode propagating along the boundary. It is shown that the surface waves in this system remain weakly damped at all wavelengths (in contrast to strongly damped surface waves in Maxwellian electron plasmas), and the damping rate nonmonotonically depends on the wavelength, with the maximum (yet small) damping occuring for surface waves with wavelength of $approx5pilambda_{F}$, where $lambda_{F}$ is the Thomas-Fermi length.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا