ﻻ يوجد ملخص باللغة العربية
Potential (electrostatic) surface waves in plasma half-space with degenerate electrons are studied using the quasi-classical mean-field kinetic model. The wave spectrum and the collisionless damping rate are obtained numerically for a wide range of wavelengths. In the limit of long wavelengths, the wave frequency $omega$ approaches the cold-plasma limit $omega=omega_p/sqrt{2}$ with $omega_p$ being the plasma frequency, while at short wavelengths, the wave spectrum asymptotically approaches the spectrum of zero-sound mode propagating along the boundary. It is shown that the surface waves in this system remain weakly damped at all wavelengths (in contrast to strongly damped surface waves in Maxwellian electron plasmas), and the damping rate nonmonotonically depends on the wavelength, with the maximum (yet small) damping occuring for surface waves with wavelength of $approx5pilambda_{F}$, where $lambda_{F}$ is the Thomas-Fermi length.
We study the response of a semi-bounded one-component fully degenerate electron plasma to an initial perturbation in the electrostatic limit. We show that the part of the electric potential corresponding to surface waves in such plasma can be represe
Surface plasmon polaritons (SPPs) in a semi-bounded degenerate plasma (e.g., a metal) are studied using the quasiclassical mean-field kinetic model, taking into account the spatial dispersion of the plasma (due to quantum degeneracy of electrons) and
Surface waves propagating in the semi-bounded collisional hot QCD medium (quark-gluon plasma) are considered. To investigate the effect of collisions as damping and non-ideality factor, the longitudinal and transverse dielectric functions of the quar
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the unifor
A theoretical investigation has been carried out to examine the ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system containing inertialess ultra-relativistically degenerate electrons, and inertial non-relativistic posit