ترغب بنشر مسار تعليمي؟ اضغط هنا

Fe$^{3+}$ $S = 5/2$ ions form saw-tooth like chains along the $a$ axis of the oxo-selenite Fe$_2$O(SeO$_3$)$_2$ and an onset of long-range magnetic order is observed for temperatures below $T_C = 105$ K. This order leads to distinct fingerprints in p honon mode linewidths and energies as resolved by Raman scattering. In addition, new excitations with small linewidths emerge below $T = 150$ K, and are assigned to two-magnon scattering processes with the participation of flat-band and high energy magnon branches. From this a set of exchange coupling constants is estimated. The specific ratio of the saw-tooth spine-spine and spine-vertex interactions may explain the instability of the dimer quantum ground state against an incommensurate 3D magnetic order.
With muon spin rotation ($ mu $SR) we studied the transition between the orthorhombic antiferromagnetic (o-AF) and the tetragonal antiferromagnetic (t-AF) states of a weakly underdoped Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystal. We obse rved some characteristic changes of the magnitude and the orientation of the magnetic field at the muon site which, due to the fairly high point symmetry of the latter, allow us to identify the magnetic structure of the t-AF state. It is the so-called, inhomogeneous double-$mathbf{Q}$ magnetic structure with $ c $-axis oriented moments which has a vanishing magnetic moment on half of the Fe sites.
The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration . Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.
The topological insulator Bi2Se3 shows a Raman scattering response related to topologically protected surface states amplified by a resonant interband transition. Most significantly this signal has a characteristic Lorentzian lineshape and spin-helic al symmetry due to collision dominated scattering of Dirac states at the Fermi level E_F on bulk valence states. Its resonance energy, temperature and doping dependence points to a high selectivity of this process. Its scattering rate (Gamma=40 cm-1=5 meV) is comparable to earlier observations, e.g. in spin-polaron systems. Although the observation of topological surface states in Raman scattering is limited to resonance conditions, this study represents a quite clean case which is not polluted by symmetry forbidden contributions from the bulk
We report zero field muon spin relaxation (muSR) measurements on RFeAsO with R = La, Ce, Pr, and Sm. We study the interaction of the FeAs and R (rare earth) electronic systems in the non superconducting magnetically ordered parent compounds of RFeAsO {1-x}Fx superconductors via a detailed comparison of the local hyperfine fields at the muon site with available Moessbauer spectroscopy and neutron scattering data. These studies provide microscopic evidence of long range commensurate magnetic Fe order with the Fe moments not varying by more than 15 % within the series RFeAsO with R = La, Ce, Pr, and Sm. At low temperatures, long range R magnetic order is also observed. Different combined Fe and R magnetic structures are proposed for all compounds using the muon site in the crystal structure obtained by electronic potential calculations. Our data point to a strong effect of R order on the iron subsystem in the case of different symmetry of Fe and R order parameters resulting in a Fe spin reorientation in the R ordered phase in PrFeAsO. Our symmetry analysis proves the absence of collinear Fe--R Heisenberg interactions in RFeAsO. A strong Fe--Ce coupling due to non--Heisenberg anisotropic exchange is found in CeFeAsO which results in a large staggered Ce magnetization induced by the magnetically ordered Fe sublattice far above T_N{Ce}. Finally, we argue that the magnetic R--Fe interaction is probably not crucial for the observed enhanced superconductivity in RFeAsO{1-x}Fx with a magnetic R ion.
Raman scattering experiments on CdCr2S4 single crystals show pronounced anomalies in intensity and frequency of optical phonon modes with an onset temperature T*=130 K that coincides with the regime of giant magnetocapacitive effects. A loss of inver sion symmetry and Cr off-centering are deduced from the observation of longitudinal optical and formerly infrared active modes for T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic polarizability of displacements that modulate the Cr-S distance and respective hybridization. Photo doping leads to an annihilation of the symmetry reduction. Our scenario of multiferroic effects is based on the near degeneracy of polar and nonpolar modes and the additional low energy scale due to hybridization.
Giant softening by 30 cm$^{-1}$ of the 490- and 620-cm$^{-1}$ modes is observed by Raman scattering measurements below the Curie temperature of single crystalline LaMnO$_{3+delta}$ ($0.085leq deltaleq0.125$). A pseudogap-like electronic continuum and a Fano antiresonance at 144 cm$^{-1}$ appear below the charge ordering temperature. This gives evidence for the presence of an orbital fluctuating state and the formation of a hole stripe, respectively. This is further corroborated by a unstructured broadening and shifting of multiphonon features with increasing doping $delta$. Our study suggests the significance of double exchange mechanism in the charged ordered insulating state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا