ترغب بنشر مسار تعليمي؟ اضغط هنا

Whether among the myriad tiny proto-galaxies there exists a population with similarities to present day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the fi rst massive galaxies to form are %in fact predicted to have extensive rotationally-supported disks. Although their morphology resembles in some ways Milky-way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift $z=8-10$ we have found that disk galaxies make up 70% of the population of galaxies with stellar mass $10^{10} M_odot$ or greater. Cold Dark Matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g. WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make possible new tests of cosmology.
We compute the energy dependence of the P_T-integrated cross section of directly produced quarkonia in pp collisions at next-to-leading order (NLO), namely up to alpha_s^3, within nonrelativistic QCD (NRQCD). Our analysis is based on the idea that th e P_T-integrated and the P_T-differential cross sections can be treated as two different observables. The colour-octet NRQCD parameters needed to predict the P_T-integrated yield can thus be extracted from the fits of the P_T-differential cross sections at mid and large P_T. For the first time, the total cross section is evaluated in NRQCD at full NLO accuracy using the recent NLO fits of the P_T-differential yields at RHIC, the Tevatron and the LHC. Both the normalisation and the energy dependence of the J/psi, psi and Upsilon(1S), we obtained, are in disagreement with the data irrespective of the fit method. The same is true if one uses CEM-like colour-octet NRQCD parameters. If, on the contrary, one disregards the colour-octet contribution, the existing data in the TeV range are well described by the alpha_s^3 contribution in the colour-singlet model --which, at alpha_s^4, however shows an unphysical energy dependence. A similar observation is made for eta(c,b). This calls for a full NNLO or for a resummation of the initial-state radiation in this channel. In any case, past claims that colour-octet transitions are dominantly responsible for low-P_T quarkonium production are not supported by our results. This may impact the interpretation of quarkonium suppression in high-energy proton-nucleus and nucleus-nucleus collisions.
101 - Yu Feng , Bin Gong , Lu-Ping Wan 2015
Following the nonrelativistic QCD factorization scheme, by taking latest available measurement on $chi_b(3P)$ into consideration, we present an updated study on the yield and polarization of $Upsilon(1S,2S,3S)$ hadroproduction, and the fractions of $ chi_b(mP)$ feed-down in $Upsilon(nS)$ production at QCD next-to-leading order. In the fitting, three schemes are applied with different choice of $chi_b(mP)$ feed-down ratios and NRQCD factorization scale. The results can explain the measurements on yield very well as in our previous work. The polarization puzzle to $Upsilon(3S)$ is now solved by considering the $chi_b(3P)$ feed-down contributions. The ratio of $sigma[chi_{b2}(1P)]/sigma[chi_{b1}(1P)]$ measurements from CMS can also be reproduced in our prediction. Among the different schemes, the results show little difference, but there are sizeable difference for the fitted long-distance color-octet matrix elements. It may bring large uncertainty when the values are applied in other experiments such as in $ee,~ep$ colliders.
The increasing size of cosmological simulations has led to the need for new visualization techniques. We focus on Smoothed Particle Hydrodynamical (SPH) simulations run with the GADGET code and describe methods for visually accessing the entire simul ation at full resolution. The simulation snapshots are rastered and processed on supercomputers into images that are ready to be accessed through a web interface (GigaPan). This allows any scientist with a web-browser to interactively explore simulation datasets in both in spatial and temporal dimensions, datasets which in their native format can be hundreds of terabytes in size or more. We present two examples, the first a static terapixel image of the MassiveBlack simulation, a P-GADGET SPH simulation with 65 billion particles, and the second an interactively zoomable animation of a different simulation with more than one thousand frames, each a gigapixel in size. Both are available for public access through the GigaPan web interface. We also make our imaging software publicly available.
Multi-instance learning attempts to learn from a training set consisting of labeled bags each containing many unlabeled instances. Previous studies typically treat the instances in the bags as independently and identically distributed. However, the i nstances in a bag are rarely independent, and therefore a better performance can be expected if the instances are treated in an non-i.i.d. way that exploits the relations among instances. In this paper, we propose a simple yet effective multi-instance learning method, which regards each bag as a graph and uses a specific kernel to distinguish the graphs by considering the features of the nodes as well as the features of the edges that convey some relations among instances. The effectiveness of the proposed method is validated by experiments.
114 - Yue-Liang Wu 2008
A left-right symmetric model with two Higgs bi-doublet is shown to be a consistent model for both spontaneous P and CP violation. The flavor changing neutral currents can be suppressed by the mechanism of approximate global U(1) family symmetry. We c alculate the constraints from neural $K$ meson mass difference $Delta m_K$ and demonstrate that a right-handed gauge boson $W_2$ contribution in box-diagrams with mass well below 1 TeV is allowed due to a cancellation caused by a light charged Higgs boson with a mass range $150 sim 300$ GeV. The $W_2$ contribution to $epsilon_K$ can be suppressed from appropriate choice of additional CP phases appearing in the right-handed Cabbibo-Kobayashi-Maskawa matrix. The model is also found to be fully consistent with $B^0$ mass difference $Delta m_B$, and the mixing-induced CP violation quantity $sin2beta_{J/psi}$, which is usually difficult for the model with only one Higgs bi-doublet. The new physics beyond the standard model can be directly searched at the colliders LHC and ILC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا