ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmission electron microscopy (TEM) is one of the primary tools to show microstructural characterization of materials as well as film thickness. However, manual determination of film thickness from TEM images is time-consuming as well as subjectiv e, especially when the films in question are very thin and the need for measurement precision is very high. Such is the case for head overcoat (HOC) thickness measurements in the magnetic hard disk drive industry. It is therefore necessary to develop software to automatically measure HOC thickness. In this paper, for the first time, we propose a HOC layer segmentation method using NASNet-Large as an encoder and then followed by a decoder architecture, which is one of the most commonly used architectures in deep learning for image segmentation. To further improve segmentation results, we are the first to propose a post-processing layer to remove irrelevant portions in the segmentation result. To measure the thickness of the segmented HOC layer, we propose a regressive convolutional neural network (RCNN) model as well as orthogonal thickness calculation methods. Experimental results demonstrate a higher dice score for our model which has lower mean squared error and outperforms current state-of-the-art manual measurement.
Domain adaptation aims to mitigate the domain gap when transferring knowledge from an existing labeled domain to a new domain. However, existing disentanglement-based methods do not fully consider separation between domain-invariant and domain-specif ic features, which means the domain-invariant features are not discriminative. The reconstructed features are also not sufficiently used during training. In this paper, we propose a novel enhanced separable disentanglement (ESD) model. We first employ a disentangler to distill domain-invariant and domain-specific features. Then, we apply feature separation enhancement processes to minimize contamination between domain-invariant and domain-specific features. Finally, our model reconstructs complete feature vectors, which are used for further disentanglement during the training phase. Extensive experiments from three benchmark datasets outperform state-of-the-art methods, especially on challenging cross-domain tasks.
Domain adaptation aims to mitigate the domain shift problem when transferring knowledge from one domain into another similar but different domain. However, most existing works rely on extracting marginal features without considering class labels. Mor eover, some methods name their model as so-called unsupervised domain adaptation while tuning the parameters using the target domain label. To address these issues, we propose a novel approach called correlated adversarial joint discrepancy adaptation network (CAJNet), which minimizes the joint discrepancy of two domains and achieves competitive performance with tuning parameters using the correlated label. By training the joint features, we can align the marginal and conditional distributions between the two domains. In addition, we introduce a probability-based top-$mathcal{K}$ correlated label ($mathcal{K}$-label), which is a powerful indicator of the target domain and effective metric to tune parameters to aid predictions. Extensive experiments on benchmark datasets demonstrate significant improvements in classification accuracy over the state of the art.
Unsupervised Domain adaptation is an effective method in addressing the domain shift issue when transferring knowledge from an existing richly labeled domain to a new domain. Existing manifold-based methods either are based on traditional models or l argely rely on Grassmannian manifold via minimizing differences of single covariance matrices of two domains. In addition, existing pseudo-labeling algorithms inadequately consider the quality of pseudo labels in aligning the conditional distribution between two domains. In this work, a deep spherical manifold Gaussian kernel (DSGK) framework is proposed to map the source and target subspaces into a spherical manifold and reduce the discrepancy between them by embedding both extracted features and a Gaussian kernel. To align the conditional distributions, we further develop an easy-to-hard pseudo label refinement process to improve the quality of the pseudo labels and then reduce categorical spherical manifold Gaussian kernel geodesic loss. Extensive experimental results show that DSGK outperforms state-of-the-art methods, especially on challenging cross-domain learning tasks.
Domain adaptation (DA) mitigates the domain shift problem when transferring knowledge from one annotated domain to another similar but different unlabeled domain. However, existing models often utilize one of the ImageNet models as the backbone witho ut exploring others, and fine-tuning or retraining the backbone ImageNet model is also time-consuming. Moreover, pseudo-labeling has been used to improve the performance in the target domain, while how to generate confident pseudo labels and explicitly align domain distributions has not been well addressed. In this paper, we show how to efficiently opt for the best pre-trained features from seventeen well-known ImageNet models in unsupervised DA problems. In addition, we propose a recurrent pseudo-labeling model using the best pre-trained features (termed PRPL) to improve classification performance. To show the effectiveness of PRPL, we evaluate it on three benchmark datasets, Office+Caltech-10, Office-31, and Office-Home. Extensive experiments show that our model reduces computation time and boosts the mean accuracy to 98.1%, 92.4%, and 81.2%, respectively, substantially outperforming the state of the art.
Estimation of bone age from hand radiographs is essential to determine skeletal age in diagnosing endocrine disorders and depicting the growth status of children. However, existing automatic methods only apply their models to test images without cons idering the discrepancy between training samples and test samples, which will lead to a lower generalization ability. In this paper, we propose an adversarial regression learning network (ARLNet) for bone age estimation. Specifically, we first extract bone features from a fine-tuned Inception V3 neural network and propose regression percentage loss for training. To reduce the discrepancy between training and test data, we then propose adversarial regression loss and feature reconstruction loss to guarantee the transition from training data to test data and vice versa, preserving invariant features from both training and test data. Experimental results show that the proposed model outperforms state-of-the-art methods.
Domain adaptation is one of the most crucial techniques to mitigate the domain shift problem, which exists when transferring knowledge from an abundant labeled sourced domain to a target domain with few or no labels. Partial domain adaptation address es the scenario when target categories are only a subset of source categories. In this paper, to enable the efficient representation of cross-domain plant images, we first extract deep features from pre-trained models and then develop adversarial consistent learning ($ACL$) in a unified deep architecture for partial domain adaptation. It consists of source domain classification loss, adversarial learning loss, and feature consistency loss. Adversarial learning loss can maintain domain-invariant features between the source and target domains. Moreover, feature consistency loss can preserve the fine-grained feature transition between two domains. We also find the shared categories of two domains via down-weighting the irrelevant categories in the source domain. Experimental results demonstrate that training features from NASNetLarge model with proposed $ACL$ architecture yields promising results on the PlantCLEF 2020 Challenge.
Dimensionality reduction on Riemannian manifolds is challenging due to the complex nonlinear data structures. While probabilistic principal geodesic analysis~(PPGA) has been proposed to generalize conventional principal component analysis (PCA) onto manifolds, its effectiveness is limited to data with a single modality. In this paper, we present a novel Gaussian latent variable model that provides a unique way to integrate multiple PGA models into a maximum-likelihood framework. This leads to a well-defined mixture model of probabilistic principal geodesic analysis (MPPGA) on sub-populations, where parameters of the principal subspaces are automatically estimated by employing an Expectation Maximization algorithm. We further develop a mixture Bayesian PGA (MBPGA) model that automatically reduces data dimensionality by suppressing irrelevant principal geodesics. We demonstrate the advantages of our model in the contexts of clustering and statistical shape analysis, using synthetic sphere data, real corpus callosum, and mandible data from human brain magnetic resonance~(MR) and CT images.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا