ﻻ يوجد ملخص باللغة العربية
Domain adaptation aims to mitigate the domain gap when transferring knowledge from an existing labeled domain to a new domain. However, existing disentanglement-based methods do not fully consider separation between domain-invariant and domain-specific features, which means the domain-invariant features are not discriminative. The reconstructed features are also not sufficiently used during training. In this paper, we propose a novel enhanced separable disentanglement (ESD) model. We first employ a disentangler to distill domain-invariant and domain-specific features. Then, we apply feature separation enhancement processes to minimize contamination between domain-invariant and domain-specific features. Finally, our model reconstructs complete feature vectors, which are used for further disentanglement during the training phase. Extensive experiments from three benchmark datasets outperform state-of-the-art methods, especially on challenging cross-domain tasks.
Recent works in domain adaptation always learn domain invariant features to mitigate the gap between the source and target domains by adversarial methods. The category information are not sufficiently used which causes the learned domain invariant fe
Existing domain adaptation methods aim at learning features that can be generalized among domains. These methods commonly require to update source classifier to adapt to the target domain and do not properly handle the trade off between the source do
Conventional unsupervised domain adaptation (UDA) studies the knowledge transfer between a limited number of domains. This neglects the more practical scenario where data are distributed in numerous different domains in the real world. The domain sim
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain l