ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by the scenario of resonant leptogenesis in which lepton number creation in the electroweak-scale is relevant, we investigate the spectral properties and possible collective nature of the standard model neutrinos at electroweak scale temper ature (T). We adopt the R_xi gauge fixing, which includes the unitary gauge as a limiting case, and allows us to study the broken as well as the restored phases of the gauge symmetry in a unified way. We show that the spectral density of the neutrino has a three-peak structure in the low-momentum region due to the scattering with the thermally excited particles (i.e., Landau damping) when T becomes comparable to the weak-boson masses in the plasma. The three peaks are identified with a novel ultrasoft mode, the usual quasiparticle, and antiplasmino modes. Varying the gauge-fixing parameter, we show that the three-peak structure appears independently of the gauge fixing and thus has a physical significance. We discuss possible implications of the neutrino spectral density obtained in the present work on particle cosmology, in particular in the context of resonant leptogenesis.
We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of the heavy-ion collisions. We first decompose the energy density into the momentum components exactly in the McLerran- Venugopalan model, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement with inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.
We derive an analytical expression for the two-gluon production in the pA (light-heavy) collisions, and focus specifically on the rapidity dependent part. We approximate the gauge field from the heavy target as the Color Glass Condensate which intera cts with the light projectile whose source density allows for a perturbative expansion. We discuss the longitudinal correlations of produced particles. Our calculation goes in part beyond the eikonal limit for the emitted gluons so that we can retain the exponential terms with respect to the rapidity difference. Our expression can thus describe the short-range correlations as well as the long-range ones for which our formula is reduced to the known expression. In a special case of two high-pt gluons in the back-to-back kinematics we find that dependence on the rapidity separation is only moderate even in the diagrammatically connected part.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا