ﻻ يوجد ملخص باللغة العربية
Motivated by the scenario of resonant leptogenesis in which lepton number creation in the electroweak-scale is relevant, we investigate the spectral properties and possible collective nature of the standard model neutrinos at electroweak scale temperature (T). We adopt the R_xi gauge fixing, which includes the unitary gauge as a limiting case, and allows us to study the broken as well as the restored phases of the gauge symmetry in a unified way. We show that the spectral density of the neutrino has a three-peak structure in the low-momentum region due to the scattering with the thermally excited particles (i.e., Landau damping) when T becomes comparable to the weak-boson masses in the plasma. The three peaks are identified with a novel ultrasoft mode, the usual quasiparticle, and antiplasmino modes. Varying the gauge-fixing parameter, we show that the three-peak structure appears independently of the gauge fixing and thus has a physical significance. We discuss possible implications of the neutrino spectral density obtained in the present work on particle cosmology, in particular in the context of resonant leptogenesis.
A first principle derivation is given of the neutrino damping rate in real-time thermal field theory. Starting from the discontinuity of the neutrino self energy at the two loop level, the damping rate can be expressed as integrals over space phase o
We consider origins of the baryon asymmetry which we observe today. We review the progress of electroweak-scale baryogenesis, and show a new mechanism, string-scale baryogenesis.
Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the o
We propose a simple extension of the Standard Model (SM) by adding an extra U(1) symmetry which is hidden from the SM sector. Such a hidden U(1) has not been considered before, and its existence at the TeV scale can be explored at the LHC. This hidde
We propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analo