ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to explore any change caused by the G2 cloud approaching, we have monitored the flux density of Sgr A* at 22 GHz from Feb. 2013 to Aug. 2014 with a sub-array of Japanese VLBI Network . The observation period included the expected periastron dates. The number of observation epochs was 283 days. We have observed no significant microwave enhancement of Sgr A* in the whole observation period. The average flux density in the period is $S=1.23+/-0.33$ Jy. The average is consistent with the usually observed flux density range of Sgr A* at 22 GHz.
199 - Satoki Matsushita 2014
We present the phase characteristics study of the Atacama Large Millimeter/submillimeter Array (ALMA) long (up to 3 km) baseline, which is the longest baseline tested so far using ALMA. The data consist of long time-scale (10 - 20 minutes) measuremen ts on a strong point source (i.e., bright quasar) at various frequency bands (bands 3, 6, and 7, which correspond to the frequencies of about 88 GHz, 232 GHz, and 336 GHz). Water vapor radiometer (WVR) phase correction works well even at long baselines, and the efficiency is better at higher PWV (>1 mm) condition, consistent with the past studies. We calculate the spatial structure function of phase fluctuation, and display that the phase fluctuation (i.e., rms phase) increases as a function of baseline length, and some data sets show turn-over around several hundred meters to 1 km and being almost constant at longer baselines. This is the first millimeter/submillimeter structure function at this long baseline length, and to show the turn-over of the structure function. Furthermore, the observation of the turn-over indicates that even if the ALMA baseline length extends to the planned longest baseline of 15 km, fringes will be detected at a similar rms phase fluctuation as that at a few km baseline lengths. We also calculate the coherence time using the 3 km baseline data, and the results indicate that the coherence time for band 3 is longer than 400 seconds in most of the data (both in the raw and WVR-corrected data). For bands 6 and 7, WVR-corrected data have about twice longer coherence time, but it is better to use fast switching method to avoid the coherence loss.
A compact gas cloud G2 is predicted to reach the pericenter of its orbit around the super massive black hole (SMBH) of our galaxy, Sagittarius A* (Sgr A*). This event will give us a rare opportunity to observe the interaction between SMBH and gas aro und it. We report the result of the fully three-dimensional simulation of the evolution of G2 during the first pericenter passage. The strong tidal force by the SMBH stretches the cloud along its orbit, and compresses it strongly in the vertical direction, resulting in the heating up and flaring up of the cloud. The bolometric luminosity will reach the maximum of $sim100 L_{odot}$. This flare should be easily observed in the near infrared.
The next-generation space VLBI mission, VSOP-2, is expected to provide unprecedented spatial resolutions at 8.4, 22, and 43GHz. In this report, phase referencing with VSOP-2 is examined in detail based on a simulation tool called ARIS. The criterion for successful phase referencing was to keep the phase errors below one radian. Simulations with ARIS reveal that phase referencing achieves good performance at 8.4GHz, even under poor tropospheric conditions. At 22 and 43GHz, it is recommended to conduct phase referencing observations under good or typical tropospheric conditions. The satellite is required to have an attitude-switching capability with a one-minute or shorter cycle, and an orbit determination accuracy higher than about 10cm at apogee; the phase referencing calibrators are required to have a signal-to-noise ratio larger than four for a single scan. The probability to find a suitable phase referencing calibrator was estimated by using VLBI surveys. From the viewpoint of calibrator availability, VSOP-2 phase referencing at 8.4GHz is promising. However, the change of finding suitable calibrators at 22 and 43GHz is significantly reduced; it is important to conduct specific investigations for each target at those frequencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا