ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently we studied communication delay in distributed control of untimed discrete-event systems based on supervisor localization. We proposed a property called delay-robustness: the overall system behavior controlled by distributed controllers with communication delay is logically equivalent to its delay-free counterpart. In this paper we extend our previous work to timed discrete-event systems, in which communication delays are counted by a special clock event {it tick}. First, we propose a timed channel model and define timed delay-robustness; for the latter, a polynomial verification procedure is presented. Next, if the delay-robust property does not hold, we introduce bounded delay-robustness, and present an algorithm to compute the maximal delay bound (measured by number of ticks) for transmitting a channeled event. Finally, we demonstrate delay-robustness on the example of an under-load tap-changing transformer.
We study supervisor localization for real-time discrete-event systems (DES) in the Brandin-Wonham framework of timed supervisory control. We view a real-time DES as comprised of asynchronous agents which are coupled through imposed logical and tempor al specifications; the essence of supervisor localization is the decomposition of monolithic (global) control action into local control strategies for these individual agents. This study extends our previous work on supervisor localization for untimed DES, in that monolithic timed control action typically includes not only disabling action as in the untimed case, but also ``clock preempting action which enforces prescribed temporal behavior. The latter action is executed by a class of special events, called ``forcible events; accordingly, we localize monolithic preemptive action with respect to these events. We demonstrate the new features of timed supervisor localization with a manufacturing cell case study, and discuss a distributed control implementation.
This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event systems (DES) with communication delays. In previous work a distributed supervisory control problem has been investigated on the assumption that inter-agent communications take place with negligible delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts. For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system behavior, and present an effective computational test for delay-robustness. From the test it typically results that the given delay-free distributed control is delay-robust with respect to certain communicated events, but not for all, thus distinguishing events which are not delay-critical from those that are. The approach is illustrated by a workcell model with three communicating agents.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا