ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - Yifei Shen , Yongji Wu , Yao Zhang 2021
Graph convolutional networks (GCNs) have recently enabled a popular class of algorithms for collaborative filtering (CF). Nevertheless, the theoretical underpinnings of their empirical successes remain elusive. In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing. By identifying the critical role of smoothness, a key concept in graph signal processing, we develop a unified graph convolution-based framework for CF. We prove that many existing CF methods are special cases of this framework, including the neighborhood-based methods, low-rank matrix factorization, linear auto-encoders, and LightGCN, corresponding to different low-pass filters. Based on our framework, we then present a simple and computationally efficient CF baseline, which we shall refer to as Graph Filter based Collaborative Filtering (GF-CF). Given an implicit feedback matrix, GF-CF can be obtained in a closed form instead of expensive training with back-propagation. Experiments will show that GF-CF achieves competitive or better performance against deep learning-based methods on three well-known datasets, notably with a $70%$ performance gain over LightGCN on the Amazon-book dataset.
Self-attention has become increasingly popular in a variety of sequence modeling tasks from natural language processing to recommendation, due to its effectiveness. However, self-attention suffers from quadratic computational and memory complexities, prohibiting its applications on long sequences. Existing approaches that address this issue mainly rely on a sparse attention context, either using a local window, or a permuted bucket obtained by locality-sensitive hashing (LSH) or sorting, while crucial information may be lost. Inspired by the idea of vector quantization that uses cluster centroids to approximate items, we propose LISA (LInear-time Self Attention), which enjoys both the effectiveness of vanilla self-attention and the efficiency of sparse attention. LISA scales linearly with the sequence length, while enabling full contextual attention via computing differentiable histograms of codeword distributions. Meanwhile, unlike some efficient attention methods, our method poses no restriction on casual masking or sequence length. We evaluate our method on four real-world datasets for sequential recommendation. The results show that LISA outperforms the state-of-the-art efficient attention methods in both performance and speed; and it is up to 57x faster and 78x more memory efficient than vanilla self-attention.
91 - Yongji Wu , Lu Yin , Defu Lian 2021
Sequential recommendation plays an increasingly important role in many e-commerce services such as display advertisement and online shopping. With the rapid development of these services in the last two decades, users have accumulated a massive amoun t of behavior data. Richer sequential behavior data has been proven to be of great value for sequential recommendation. However, traditional sequential models fail to handle users lifelong sequences, as their linear computational and storage cost prohibits them from performing online inference. Recently, lifelong sequential modeling methods that borrow the idea of memory networks from NLP are proposed to address this issue. However, the RNN-based memory networks built upon intrinsically suffer from the inability to capture long-term dependencies and may instead be overwhelmed by the noise on extremely long behavior sequences. In addition, as the users behavior sequence gets longer, more interests would be demonstrated in it. It is therefore crucial to model and capture the diverse interests of users. In order to tackle these issues, we propose a novel lifelong incremental multi-interest self attention based sequential recommendation model, namely LimaRec. Our proposed method benefits from the carefully designed self-attention to identify relevant information from users behavior sequences with different interests. It is still able to incrementally update users representations for online inference, similarly to memory network based approaches. We extensively evaluate our method on four real-world datasets and demonstrate its superior performances compared to the state-of-the-art baselines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا