ترغب بنشر مسار تعليمي؟ اضغط هنا

We first derive for the general form of the fidelity for various bosonic channels. Thereby we give the fidelity of different quantum bosonic channel, possibly with product input and entangled input respectively, as examples. The properties of the fidelity are carefully examined.
The process of quantum teleportation can be considered as a quantum channel. The exact classical capacity of the continuous variable teleportation channel is given. Also, the channel fidelity is derived. Consequently, the properties of the continuous variable quantum teleportation are discussed and interesting results are obtained.
Quantum communications using continuous variables are quite mature experimental techniques and the relevant theories have been extensively investigated with various methods. In this paper, we study the continuous variable quantum channels from a diff erent angle, i.e., by exploring master equations. And we finally give explicitly the capacity of the channel we are studying. By the end of this paper, we derive the criterion for the optimal capacities of the Gaussian channel versus its fidelity.
We present a necessary and sufficient condition for the separability of multipartite quantum states, this criterion also tells us how to write a multipartite separable state as a convex sum of separable pure states. To work out this criterion, we nee d to solve a set of equations, actually it is easy to solve these quations analytically if the density matrix of the given quantum state has few nonzero eigenvalues.
We show that not all 4-party pure states are GHZ reducible (i.e., can be generated reversibly from a combination of 2-, 3- and 4-party maximally entangled states by local quantum operations and classical communication asymptotically) through an examp le, we also present some properties of the relative entropy of entanglement for those 3-party pure states that are GHZ reducible, and then we relate these properties to the additivity of the relative entropy of entanglement.
249 - Shengjun Wu , Yongde Zhang 2000
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.
We consider the transmission of classical information over a quantum channel by two senders. The channel capacity region is shown to be a convex hull bound by the Von Neumann entropy and the conditional Von Neumann entropy. We discuss some possible a pplications of our result. We also show that our scheme allows a reasonable distribution of channel capacity over two senders.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا