ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.
Nanoscale superconducting quantum interference devices (SQUIDs) demonstrate record sensitivities to small magnetic moments, but are typically sensitive only to the field component that is normal to the plane of the SQUID and out-of-plane with respect to the scanned surface. We report on a nanoscale three-junction Pb SQUID which is fabricated on the apex of a sharp tip. Because of its three-dimensional structure, it exhibits a unique tunable sensitivity to both in-plane and out-of-plane fields. We analyze the two-dimensional interference pattern from both numerical and experimental points of view. This device is integrated into a scanning microscope and its ability to independently measure the different components of the magnetic field with outstanding spin sensitivity better than $5 frac{mu_B}{mathrm{Hz}^{1/2}}$ is demonstrated. This highlights its potential as a local probe of nanoscale magnetic structures.
One of the critical milestones in the intensive pursuit of quantitative nanoscale magnetic imaging tools is achieving the level of sensitivity required for detecting the field generated by the spin magnetic moment {mu}B of a single electron. Supercon ducting quantum interference devices (SQUIDs), which were traditionally the most sensitive magnetometers, could not hitherto reach this goal because of their relatively large effective size (of the order of 1 {mu}m). Here we report self-aligned fabrication of nano-SQUIDs with diameters as small as 46 nm and with an extremely low flux noise of 50 n{Phi}0/Hz^1/2, representing almost two orders of magnitude improvement in spin sensitivity, down to 0.38 {mu}B/Hz^1/2. In addition, the devices operate over a wide range of magnetic fields with 0.6 {mu}B/Hz^1/2 sensitivity even at 1 T. We demonstrate magnetic imaging of vortices in type II superconductor that are 120 nm apart and scanning measurements of AC magnetic fields down to 50 nT. The unique geometry of these nano-SQUIDs that reside on the apex of a sharp tip allows approaching the sample to within a few nm, which paves the way to a new class of single-spin resolved scanning probe microscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا