ترغب بنشر مسار تعليمي؟ اضغط هنا

Along with the development of AI democratization, the machine learning approach, in particular neural networks, has been applied to wide-range applications. In different application scenarios, the neural network will be accelerated on the tailored co mputing platform. The acceleration of neural networks on classical computing platforms, such as CPU, GPU, FPGA, ASIC, has been widely studied; however, when the scale of the application consistently grows up, the memory bottleneck becomes obvious, widely known as memory-wall. In response to such a challenge, advanced quantum computing, which can represent 2^N states with N quantum bits (qubits), is regarded as a promising solution. It is imminent to know how to design the quantum circuit for accelerating neural networks. Most recently, there are initial works studying how to map neural networks to actual quantum processors. To better understand the state-of-the-art design and inspire new design methodology, this paper carries out a case study to demonstrate an end-to-end implementation. On the neural network side, we employ the multilayer perceptron to complete image classification tasks using the standard and widely used MNIST dataset. On the quantum computing side, we target IBM Quantum processors, which can be programmed and simulated by using IBM Qiskit. This work targets the acceleration of the inference phase of a trained neural network on the quantum processor. Along with the case study, we will demonstrate the typical procedure for mapping neural networks to quantum circuits.
This work aims to enable on-device training of convolutional neural networks (CNNs) by reducing the computation cost at training time. CNN models are usually trained on high-performance computers and only the trained models are deployed to edge devic es. But the statically trained model cannot adapt dynamically in a real environment and may result in low accuracy for new inputs. On-device training by learning from the real-world data after deployment can greatly improve accuracy. However, the high computation cost makes training prohibitive for resource-constrained devices. To tackle this problem, we explore the computational redundancies in training and reduce the computation cost by two complementary approaches: self-supervised early instance filtering on data level and error map pruning on the algorithm level. The early instance filter selects important instances from the input stream to train the network and drops trivial ones. The error map pruning further prunes out insignificant computations when training with the selected instances. Extensive experiments show that the computation cost is substantially reduced without any or with marginal accuracy loss. For example, when training ResNet-110 on CIFAR-10, we achieve 68% computation saving while preserving full accuracy and 75% computation saving with a marginal accuracy loss of 1.3%. Aggressive computation saving of 96% is achieved with less than 0.1% accuracy loss when quantization is integrated into the proposed approaches. Besides, when training LeNet on MNIST, we save 79% computation while boosting accuracy by 0.2%.
Despite the pursuit of quantum advantages in various applications, the power of quantum computers in neural network computations has mostly remained unknown, primarily due to a missing link that effectively designs a neural network model suitable for quantum circuit implementation. In this article, we present the co-design framework, namely QuantumFlow, to provide such a missing link. QuantumFlow consists of novel quantum-friendly neural networks (QF-Nets), a mapping tool (QF-Map) to generate the quantum circuit (QF-Circ) for QF-Nets, and an execution engine (QF-FB). We discover that, in order to make full use of the strength of quantum representation, it is best to represent data in a neural network as either random variables or numbers in unitary matrices, such that they can be directly operated by the basic quantum logical gates. Based on these data representations, we propose two quantum friendly neural networks, QF-pNet and QF-hNet in QuantumFlow. QF-pNet using random variables has better flexibility, and can seamlessly connect two layers without measurement with more qbits and logical gates than QF-hNet. On the other hand, QF-hNet with unitary matrices can encode 2^k data into k qbits, and a novel algorithm can guarantee the cost complexity to be O(k^2). Compared to the cost of O(2^k)in classical computing, QF-hNet demonstrates the quantum advantages. Evaluation results show that QF-pNet and QF-hNet can achieve 97.10% and 98.27% accuracy, respectively. Results further show that for input sizes of neural computation grow from 16 to 2,048, the cost reduction of QuantumFlow increased from 2.4x to 64x. Furthermore, on MNIST dataset, QF-hNet can achieve accuracy of 94.09%, while the cost reduction against the classical computer reaches 10.85x. To the best of our knowledge, QuantumFlow is the first work to demonstrate the potential quantum advantage on neural network computation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا