ترغب بنشر مسار تعليمي؟ اضغط هنا

We generalize a tensor-network algorithm to study thermodynamic properties of self-similar spin lattices constructed on a square-lattice frame with two types of couplings, $J_{1}^{}$ and $J_{2}^{}$, chosen to transform a regular square lattice ($J_{1 }^{} = J_{2}^{}$) onto a fractal lattice if decreasing $J_{2}^{}$ to zero (the fractal fully reconstructs when $J_{2}^{} = 0$). We modified the Higher-Order Tensor Renormalization Group (HOTRG) algorithm for this purpose. Single-site measurements are performed by means of so-called impurity tensors. So far, only a single local tensor and uniform extension-contraction relations have been considered in HOTRG. We introduce ten independent local tensors, each being extended and contracted by fifteen different recursion relations. We applied the Ising model to the $J_{1}^{}-J_{2}^{}$ planar fractal whose Hausdorff dimension at $J_{2}^{} = 0$ is $d^{(H)} = ln 12 / ln 4 approx 1.792$. The generalized tensor-network algorithm is applicable to a wide range of fractal patterns and is suitable for models without translational invariance.
The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remain s difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine (RBM) and the weight factor distribution in the RG procedure, an optimal real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. This scheme naturally generates a transformation that maximizes the real-space mutual information between the coarse-grained region and the environment. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way to further interdisciplinary research.
We introduce a general method for optimizing real-space renormalization-group transformations to study the critical properties of a classical system. The scheme is based on minimizing the Kullback-Leibler divergence between the distribution of the sy stem and the normalized normalizing factor of the transformation parametrized by a restricted Boltzmann machine. We compute the thermal critical exponent of the two-dimensional Ising model using the trained optimal projector and obtain a very accurate thermal critical exponent $y_t=1.0001(11)$ after the first step of the transformation.
A preponderance of evidence suggests that the ground state of the nearest-neighbor $S = 1/2$ antiferromagnetic Heisenberg model on the kagome lattice is a gapless spin liquid. Many candidate materials for the realization of this model possess in addi tion a Dzyaloshinskii-Moriya (DM) interaction. We study this system by tensor-network methods and deduce that a weak but finite DM interaction is required to destabilize the gapless spin-liquid state. The critical magnitude, $D_c/J simeq 0.012(2)$, lies well below the DM strength proposed in the kagome material herbertsmithite, indicating a need to reassess the apparent spin-liquid behavior reported in this system.
We test an improved finite-size scaling method for reliably extracting the critical temperature $T_{rm BKT}$ of a Berezinskii-Kosterlitz-Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness $rho_s$ at $T_{rm BKT}$ in combination with the Kosterlitz-Nelson relation between the transition temperature and the stiffness, $rho_s(T_{rm BKT})=2T_{rm BKT}/pi$, we define a size dependent transition temperature $T_{rm BKT}(L_1,L_2)$ based on a pair of system sizes $L_1,L_2$, e.g., $L_2=2L_1$. We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining $T_{rm BKT}(L_1,L_2)$. For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for $L$ up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result $T_{rm BKT}=0.8935(1)$ is several error bars above the previously best estimates of the transition temperature; $T_{rm BKT} approx 0.8929$. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated $T_{rm BKT}$ because of neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions.
We perform large-scale Monte Carlo simulations of the classical XY model on a three-dimensional $Ltimes L times L$ cubic lattice using the graphics processing unit (GPU). By the combination of Metropolis single-spin flip, over-relaxation and parallel -tempering methods, we simulate systems up to L=160. Performing the finite-size scaling analysis, we obtain estimates of the critical exponents for the three-dimensional XY universality class: $alpha=-0.01293(48)$ and $ u=0.67098(16)$. Our estimate for the correlation-length exponent $ u$, in contrast to previous theoretical estimates, agrees with the most recent experimental estimate $ u_{rm exp}=0.6709(1)$ at the superfluid transition of $^4$He in a microgravity environment.
Using the example of Zn-doped La2CuO4, we demonstrate that a spinless impurity doped into a non-frustrated antiferromagnet can induce substantial frustrating interactions among the spins surrounding it. This counterintuitive result is the key to reso lving discrepancies between experimental data and earlier theories. Analytic and quantum Monte Carlo studies of the impurity-induced frustration are in a close accord with each other and experiments. The mechanism proposed here should be common to other correlated oxides as well.
We establish that the cuprate pseudogap plays a crucial role in the $ab$-plane optical conductivity $sigma(omega,T)$ for temperatures $T le T_c$. The pseudogap signatures in $sigma(omega,T)$ associated with competing proposals of a ``hidden order and ``superconducting origin for the $d_{x^2 - y^2}$ pseudogap are found to differ in their qualitative $omega,T$ dependences. For the latter case, as $T$ increases from 0, excess low $omega$ weight appears; moreover, a much wider range of $omega$ contributes to form the condensate. We discuss these theories in light of current experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا