ﻻ يوجد ملخص باللغة العربية
We introduce a general method for optimizing real-space renormalization-group transformations to study the critical properties of a classical system. The scheme is based on minimizing the Kullback-Leibler divergence between the distribution of the system and the normalized normalizing factor of the transformation parametrized by a restricted Boltzmann machine. We compute the thermal critical exponent of the two-dimensional Ising model using the trained optimal projector and obtain a very accurate thermal critical exponent $y_t=1.0001(11)$ after the first step of the transformation.
Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order pha
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimens
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the
We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric f
Efficient sampling of complex high-dimensional probability densities is a central task in computational science. Machine Learning techniques based on autoregressive neural networks have been recently shown to provide good approximations of probabilit