ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate collisional loss in an ultracold mixture of $^{40}$K$^{87}$Rb molecules and $^{87}$Rb atoms, where chemical reactions between the two species are energetically forbidden. Through direct detection of the KRb$_{2}^{*}$ intermediate compl exes formed from atom-molecule collisions, we show that a $1064$ nm laser source used for optical trapping of the sample can efficiently deplete the complex population via photo-excitation, an effect which can explain the universal two-body loss observed in the mixture. By monitoring the time-evolution of the KRb$_{2}^{*}$ population after a sudden reduction in the $1064$ nm laser intensity, we measure the lifetime of the complex ($0.39(6)$ ms), as well as the photo-excitation rate for $1064$ nm light ($0.50(3)$ $mu$s$^{-1}($kW/cm$^{2})^{-1}$). The observed lifetime is ${sim}10^{5}$ times longer than recent estimates based on the Rice-Ramsperger-Kassel-Marcus statistical theory, which calls for new insight to explain such a dramatic discrepancy.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolut ion with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
Dense ensembles of spin qubits are valuable for quantum applications, even though their coherence protection remains challenging. Continuous dynamical decoupling can protect ensemble qubits from noise while allowing gate operations, but it is hindere d by the additional noise introduced by the driving. Concatenated continuous driving (CCD) techniques can, in principle, mitigate this problem. Here we provide deeper insights into the dynamics under CCD, based on Floquet theory, that lead to optimized state protection by adjusting driving parameters in the CCD scheme to induce mode evolution control. We experimentally demonstrate the improved control by simultaneously addressing a dense Nitrogen-vacancy (NV) ensemble with $10^{10}$ spins. We achieve an experimental 15-fold improvement in coherence time for an arbitrary, unknown state, and a 500-fold improvement for an arbitrary, known state, corresponding to driving the sidebands and the center band of the resulting Mollow triplet, respectively. We can achieve such coherence time gains by optimizing the driving parameters to take into account the noise affecting our system. By extending the generalized Bloch equation approach to the CCD scenario, we identify the noise sources that dominate the decay mechanisms in NV ensembles, confirm our model by experimental results, and identify the driving strengths yielding optimal coherence. Our results can be directly used to optimize qubit coherence protection under continuous driving and bath driving, and enable applications in robust pulse design and quantum sensing.
187 - Guoqing Wang , Yi-Xiang Liu , 2020
The Mollow triplet is a fundamental signature of quantum optics, and has been observed in numerous quantum systems. Although it arises in the strong driving regime of the quantized field, where the atoms undergo coherent oscillations, it can be typic ally analyzed within the rotating wave approximation. Here we report the first observation of high-order effects in the Mollow triplet structure due to strong driving. In experiments, we explore the regime beyond the rotating wave approximation using concatenated continuous driving that has less stringent requirements on the driving field power. We are then able to reveal additional transition frequencies, shifts in energy levels, and corrections to the transition amplitudes. In particular, we find that these amplitudes are more sensitive to high-order effects than the frequency shifts, and that they still require an accurate determination in order to achieve high-fidelity quantum control. The experimental results are validated by the Floquet theory, which enables the precise numerical simulation of the evolution and further provides an analytical form for an effective Hamiltonian that approximately predicts the spin dynamics beyond the rotating wave approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا