ﻻ يوجد ملخص باللغة العربية
Dense ensembles of spin qubits are valuable for quantum applications, even though their coherence protection remains challenging. Continuous dynamical decoupling can protect ensemble qubits from noise while allowing gate operations, but it is hindered by the additional noise introduced by the driving. Concatenated continuous driving (CCD) techniques can, in principle, mitigate this problem. Here we provide deeper insights into the dynamics under CCD, based on Floquet theory, that lead to optimized state protection by adjusting driving parameters in the CCD scheme to induce mode evolution control. We experimentally demonstrate the improved control by simultaneously addressing a dense Nitrogen-vacancy (NV) ensemble with $10^{10}$ spins. We achieve an experimental 15-fold improvement in coherence time for an arbitrary, unknown state, and a 500-fold improvement for an arbitrary, known state, corresponding to driving the sidebands and the center band of the resulting Mollow triplet, respectively. We can achieve such coherence time gains by optimizing the driving parameters to take into account the noise affecting our system. By extending the generalized Bloch equation approach to the CCD scenario, we identify the noise sources that dominate the decay mechanisms in NV ensembles, confirm our model by experimental results, and identify the driving strengths yielding optimal coherence. Our results can be directly used to optimize qubit coherence protection under continuous driving and bath driving, and enable applications in robust pulse design and quantum sensing.
The Mollow triplet is a fundamental signature of quantum optics, and has been observed in numerous quantum systems. Although it arises in the strong driving regime of the quantized field, where the atoms undergo coherent oscillations, it can be typic
The loss of coherence is one of the main obstacles for the implementation of quantum information processing. The efficiency of dynamical decoupling schemes, which have been introduced to address this problem, is limited itself by the fluctuations in
Entanglement between two quantum systems is a resource in quantum information, but dissipation usually destroys it. In this article we consider two qubits without direct interaction and we show that, even in cases where the open system dynamics destr
Decoherence largely limits the physical realization of qubits and its mitigation is critical to quantum science. Here, we construct a robust qubit embedded in a decoherence-protected subspace, obtained by hybridizing an applied microwave drive with t
In this letter, we investigate the effects of non-Hermitian driving on quantum coherence in a bipartite system. The results that the dynamical localization destroyed by the Hermitian interaction revives are an evidence of the restoration of quantum c