ترغب بنشر مسار تعليمي؟ اضغط هنا

The interplay between interlayer van der Waals interaction and intralayer lattice distortion can lead to structural reconstruction in slightly twisted bilayer graphene (TBG) with the twist angle being smaller than a characteristic angle {theta}c. Exp erimentally, the {theta}c is demonstrated to be very close to the magic angle ({theta} ~ 1.05{deg}). In this work, we address the transition between reconstructed and unreconstructed structures of the TBG across the magic angle by using scanning tunnelling microscopy (STM). Our experiment demonstrates that both the two structures are stable in the TBG around the magic angle. By applying a STM tip pulse, we show that the two structures can be switched to each other and the bandwidth of the flat bands, which plays a vital role in the emergent strongly correlated states in the magic-angle TBG, can be tuned. The observed tunable lattice reconstruction and bandwidth of the flat bands provide an extra control knob to manipulate the exotic electronic states of the TBG near the magic angle.
82 - Yi-Wen Liu , Zhe Hou , Si-Yu Li 2019
Since its discovery, Berry phase has been demonstrated to play an important role in many quantum systems. In gapped Bernal bilayer graphene, the Berry phase can be continuously tuned from zero to 2pi, which offers a unique opportunity to explore the tunable Berry phase on the physical phenomena. Here, we report experimental observation of Berry phases-induced valley splitting and crossing in moveable bilayer graphene p-n junction resonators. In our experiment, the bilayer graphene resonators are generated by combining the electric field of scanning tunneling microscope tip with the gap of bilayer graphene. A perpendicular magnetic field changes the Berry phase of the confined bound states in the resonators from zero to 2pi continuously and leads to the Berry phase difference for the two inequivalent valleys in the bilayer graphene. As a consequence, we observe giant valley splitting and unusual valley crossing of the lowest bound states. Our results indicate that the bilayer graphene resonators can be used to manipulate the valley degree of freedom in valleytronics.
Background: Fluctuating hearing loss is characteristic of Menieres Disease (MD) during acute episodes. However, no reliable audiometric hallmarks are available for counselling the hearing recovery possibility. Aims/Objectives: To find parameters for predicting MD hearing outcomes. Material and Methods: We applied machine learning techniques to analyse transient-evoked otoacoustic emission (TEOAE) signals recorded from patients with MD. Thirty unilateral MD patients were recruited prospectively after onset of acute cochleo-vestibular symptoms. Serial TEOAE and pure-tone audiogram (PTA) data were recorded longitudinally. Denoised TEOAE signals were projected onto the three most prominent principal directions through a linear transformation. Binary classification was performed using a support vector machine (SVM). TEOAE signal parameters, including signal energy and group delay, were compared between improved and nonimproved groups using Welchs t-test. Results: Signal energy did not differ (p = 0.64) but a significant difference in 1-kHz (p = 0.045) group delay was recorded between improved and nonimproved groups. The SVM achieved a cross-validated accuracy of >80% in predicting hearing outcomes. Conclusions and Significance: This study revealed that baseline TEOAE parameters obtained during acute MD episodes, when processed through machine learning technology, may provide information on outer hair cell function to predict hearing recovery.
Twisted graphene bilayers (TGBs) have low-energy van Hove singularities (VHSs) that are strongly localized around AA-stacked regions of the moire pattern. Therefore, they exhibit novel many-body electronic states, such as Mott-like insulator and unco nventional superconductivity. Unfortunately, these strongly correlated states were only observed in magic angle TGBs with the twist angle theta~1.1{deg}, requiring a precisely tuned structure. Is it possible to realize exotic quantum phases in the TGBs not limited at the magic angle? Here we studied electronic properties of a TGB with theta~1.64{deg} and demonstrated that a VHS splits into two spin-polarized states flanking the Fermi energy when the VHS is close to the Fermi level. Such a result indicates that localized magnetic moments emerge in the AA-stacked regions of the TGB. Since the low-energy VHSs are quite easy to be reached in slightly TGBs, our result therefore provides a facile direction to realize novel quantum phases in graphene system.
Measuring degeneracy and broken-symmetry states of a system at nanoscale requires extremely high energy and spatial resolution, which has so far eluded direct observation. Here, we realize measurement of the degeneracy and subtle broken-symmetry stat es of graphene at nanoscale for the first time. By using edge-free graphene quantum dots, we are able to measure valley splitting and valley-contrasting spin splitting of graphene at the single-electron level. Our experiments detect large valley splitting around atomic defects of graphene due to the coexistence of sublattice symmetry breaking and time reversal symmetry breaking. Large valley-contrasting spin splitting induced by enhanced spin-orbit coupling around the defects is also observed. These results reveal unexplored exotic electronic states in graphene at nanoscale induced by the atomic defects.
76 - Hau-tieng Wu , Yi-Wen Liu 2017
The linear part of transient evoked (TE) otoacoustic emission (OAE) is thought to be generated via coherent reflection near the characteristic place of constituent wave components. Because of the tonotopic organization of the cochlea, high frequency emissions return earlier than low frequencies; however, due to the random nature of coherent reflection, the instantaneous frequency (IF) and amplitude envelope of TEOAEs both fluctuate. Multiple reflection components and synchronized spontaneous emissions can further make it difficult to extract the IF by linear transforms. In this paper, we propose to model TEOAEs as a sum of {em intrinsic mode-type functions} and analyze it by a {nonlinear-type time-frequency analysis} technique called concentration of frequency and time (ConceFT). When tested with synthetic OAE signals {with possibly multiple oscillatory components}, the present method is able to produce clearly visualized traces of individual components on the time-frequency plane. Further, when the signal is noisy, the proposed method is compared with existing linear and bilinear methods in its accuracy for estimating the fluctuating IF. Results suggest that ConceFT outperforms the best of these methods in terms of optimal transport distance, reducing the error by 10 to {21%} when the signal to noise ratio is 10 dB or below.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا