ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing transient-evoked otoacoustic emissions by concentration of frequency and time

77   0   0.0 ( 0 )
 نشر من قبل Hau-tieng Wu
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

The linear part of transient evoked (TE) otoacoustic emission (OAE) is thought to be generated via coherent reflection near the characteristic place of constituent wave components. Because of the tonotopic organization of the cochlea, high frequency emissions return earlier than low frequencies; however, due to the random nature of coherent reflection, the instantaneous frequency (IF) and amplitude envelope of TEOAEs both fluctuate. Multiple reflection components and synchronized spontaneous emissions can further make it difficult to extract the IF by linear transforms. In this paper, we propose to model TEOAEs as a sum of {em intrinsic mode-type functions} and analyze it by a {nonlinear-type time-frequency analysis} technique called concentration of frequency and time (ConceFT). When tested with synthetic OAE signals {with possibly multiple oscillatory components}, the present method is able to produce clearly visualized traces of individual components on the time-frequency plane. Further, when the signal is noisy, the proposed method is compared with existing linear and bilinear methods in its accuracy for estimating the fluctuating IF. Results suggest that ConceFT outperforms the best of these methods in terms of optimal transport distance, reducing the error by 10 to {21%} when the signal to noise ratio is 10 dB or below.



قيم البحث

اقرأ أيضاً

Background: Fluctuating hearing loss is characteristic of Menieres Disease (MD) during acute episodes. However, no reliable audiometric hallmarks are available for counselling the hearing recovery possibility. Aims/Objectives: To find parameters for predicting MD hearing outcomes. Material and Methods: We applied machine learning techniques to analyse transient-evoked otoacoustic emission (TEOAE) signals recorded from patients with MD. Thirty unilateral MD patients were recruited prospectively after onset of acute cochleo-vestibular symptoms. Serial TEOAE and pure-tone audiogram (PTA) data were recorded longitudinally. Denoised TEOAE signals were projected onto the three most prominent principal directions through a linear transformation. Binary classification was performed using a support vector machine (SVM). TEOAE signal parameters, including signal energy and group delay, were compared between improved and nonimproved groups using Welchs t-test. Results: Signal energy did not differ (p = 0.64) but a significant difference in 1-kHz (p = 0.045) group delay was recorded between improved and nonimproved groups. The SVM achieved a cross-validated accuracy of >80% in predicting hearing outcomes. Conclusions and Significance: This study revealed that baseline TEOAE parameters obtained during acute MD episodes, when processed through machine learning technology, may provide information on outer hair cell function to predict hearing recovery.
397 - Ziyu Chen , Hau-Tieng Wu 2020
To handle time series with complicated oscillatory structure, we propose a novel time-frequency (TF) analysis tool that fuses the short time Fourier transform (STFT) and periodic transform (PT). Since many time series oscillate with time-varying freq uency, amplitude and non-sinusoidal oscillatory pattern, a direct application of PT or STFT might not be suitable. However, we show that by combining them in a proper way, we obtain a powerful TF analysis tool. We first combine the Ramanujan sums and $l_1$ penalization to implement the PT. We call the algorithm Ramanujan PT (RPT). The RPT is of its own interest for other applications, like analyzing short signal composed of components with integer periods, but that is not the focus of this paper. Second, the RPT is applied to modify the STFT and generate a novel TF representation of the complicated time series that faithfully reflect the instantaneous frequency information of each oscillatory components. We coin the proposed TF analysis the Ramanujan de-shape (RDS) and vectorized RDS (vRDS). In addition to showing some preliminary analysis results on complicated biomedical signals, we provide theoretical analysis about RPT. Specifically, we show that the RPT is robust to three commonly encountered noises, including envelop fluctuation, jitter and additive noise.
We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.
104 - Pablo Jensen 2008
We have developed a method to obtain robust quantitative bibliometric indicators for several thousand scientists. This allows us to study the dependence of bibliometric indicators (such as number of publications, number of citations, Hirsch index...) on the age, position, etc. of CNRS scientists. Our data suggests that the normalized h index (h divided by the career length) is not constant for scientists with the same productivity but differents ages. We also compare the predictions of several bibliometric indicators on the promotions of about 600 CNRS researchers. Contrary to previous publications, our study encompasses most disciplines, and shows that no single indicator is the best predictor for all disciplines. Overall, however, the Hirsch index h provides the least bad correlations, followed by the number of papers published. It is important to realize however that even h is able to recover only half of the actual promotions. The number of citations or the mean number of citations per paper are definitely not good predictors of promotion.
137 - Lei Jiang , Haijian Zhang , Lei Yu 2020
Time-frequency distributions (TFDs) play a vital role in providing descriptive analysis of non-stationary signals involved in realistic scenarios. It is well known that low time-frequency (TF) resolution and the emergency of cross-terms (CTs) are two main issues, which make it difficult to analyze and interpret practical signals using TFDs. In order to address these issues, we propose the U-Net aided iterative shrinkage-thresholding algorithm (U-ISTA) for reconstructing a near-ideal TFD by exploiting structured sparsity in signal TF domain. Specifically, the signal ambiguity function is firstly compressed, followed by unfolding the ISTA as a recurrent neural network. To consider continuously distributed characteristics of signals, a structured sparsity constraint is incorporated into the unfolded ISTA by regarding the U-Net as an adaptive threshold block, in which structure-aware thresholds are learned from enormous training data to exploit the underlying dependencies among neighboring TF coefficients. The proposed U-ISTA model is trained by both non-overlapped and overlapped synthetic signals including closely and far located non-stationary components. Experimental results demonstrate that the robust U-ISTA achieves superior performance compared with state-of-the-art algorithms, and gains a high TF resolution with CTs greatly eliminated even in low signal-to-noise ratio (SNR) environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا