ترغب بنشر مسار تعليمي؟ اضغط هنا

194 - Jie Li , Yi-Pu Wang , Wei-Jiang Wu 2021
A quantum network consisting of magnonic and mechanical nodes connected by light is proposed. Recent years have witnessed a significant development in cavity magnonics based on collective spin excitations in ferrimagnetic crystals, such as yttrium ir on garnet (YIG). Magnonic systems are considered to be a promising building block for a future quantum network. However, a major limitation of the system is that the coherence time of the magnon excitations is limited by their intrinsic loss (typically in the order of 1 $mu$s for YIG). Here, we show that by coupling the magnonic system to a mechanical system using optical pulses, an arbitrary magnonic state (either classical or quantum) can be transferred to and stored in a distant long-lived mechanical resonator. The fidelity depends on the pulse parameters and the transmission loss. We further show that the magnonic and mechanical nodes can be prepared in a macroscopic entangled state. These demonstrate the quantum state transfer and entanglement distribution in such a novel quantum network of magnonic and mechanical nodes. Our work shows the possibility to connect two separate fields of optomagnonics and optomechanics, and to build a long-distance quantum network based on magnonic and mechanical systems.
Recent studies show that hybrid quantum systems based on magnonics provide a new and promising platform for generating macroscopic quantum states involving a large number of spins. Here we show how to entangle two magnon modes in two massive yttrium- iron-garnet (YIG) spheres using cavity optomagnonics, where magnons couple to high-quality optical whispering gallery modes supported by the YIG sphere. The spheres can be as large as 1 mm in diameter and each sphere contains more than $10^{18}$ spins. The proposal is based on the asymmetry of the Stokes and anti-Stokes sidebands generated by the magnon-induced Brillouin light scattering in cavity optomagnonics. This allows one to utilize the Stokes and anti-Stokes scattering process, respectively, for generating and verifying the entanglement. Our work indicates that cavity optomagnonics could be a promising system for preparing macroscopic quantum states.
317 - Jie Li , Yi-Pu Wang , J. Q. You 2021
Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive intera ction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved. The scheme can be realized within the reach of current technology in cavity electromagnonics and magnomechanics. Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields, and may find promising applications in quantum information processing and quantum metrology.
74 - Y. Yang , Yi-Pu Wang , J.W. Rao 2020
By engineering an anti-parity-time (anti-PT) symmetric cavity magnonics system with precise eigenspace controllability, we observe two different singularities in the same system. One type of singularity, the exceptional point (EP), is produced by tun ing the magnon damping. Between two EPs, the maximal coherent superposition of photon and magnon states is robustly sustained by the preserved anti-PT symmetry. The other type of singularity, arising from the dissipative coupling of two anti-resonances, is an unconventional bound state in the continuum (BIC). At the settings of BICs, the coupled system exhibits infinite discontinuities in the group delay. We find that both singularities co-exist at the equator of the Bloch sphere, which reveals a unique hybrid state that simultaneously exhibits the maximal coherent superposition and slow light capability.
252 - Yi-Pu Wang , J.W. Rao , Y. Yang 2019
We reveal the cooperative effect of coherent and dissipative magnon-photon couplings in an open cavity magnonic system, which leads to nonreciprocity with a considerably large isolation ratio and flexible controllability. Furthermore, we discover uni directional invisibility for microwave propagation, which appears at the zero-damping condition for hybrid magnon-photon modes. A simple model is developed to capture the generic physics of the interference between coherent and dissipative couplings, which accurately reproduces the observations over a broad range of parameters. This general scheme could inspire methods to achieve nonreciprocity in other systems.
129 - Guo-Qiang Zhang , Yi-Pu Wang , 2019
For some cavity-quantum-electrodynamics systems, such as a single electron spin coupled to a passive cavity, it is challenging to reach the strong-coupling regime. In such a weak-coupling regime, the conventional dispersive readout technique cannot b e used to resolve the quantum states of the spin. Here we propose an improved dispersive readout method to measure the quantum states of a weakly coupled qubit by harnessing either one or two auxiliary cavities linearly coupled to the passive cavity containing the qubit. With appropriate parameters in both cases, the system excluding the qubit can exhibit a parity-time-symmetric phase transition at the exceptional point (EP). Because the EP can amplify the perturbation induced by the qubit and the parity-time symmetry can narrow the linewidths of the peaks in the transmission spectrum of the passive cavity, we can measure the quantum states of the weakly coupled qubit via this transmission spectrum. Owing to the weak coupling between the qubit and the passive cavity, the backaction due to the measurement of the qubit can also be reduced in comparison with the conventional dispersive readout technique in the strong-coupling regime.
107 - Guo-Qiang Zhang , Yi-Pu Wang , 2019
We develop a theory for the magnon Kerr effect in a cavity magnonics system, consisting of magnons in a small yttrium iron garnet (YIG) sphere strongly coupled to cavity photons, and use it to study the bistability in this hybrid system. To have a co mplete picture of the bistability phenomenon, we analyze two different cases in driving the cavity magnonics system, i.e., directly pumping the YIG sphere and the cavity, respectively. In both cases, the magnon frequency shifts due to the Kerr effect exhibit a similar bistable behavior but the corresponding critical powers are different. Moreover, we show how the bistability of the system can be demonstrated using the transmission spectrum of the cavity. Our results are valid in a wide parameter regime and generalize the theory of bistability in a cavity magnonics system.
Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both pho tons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsical nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sha rp frequency switchings of the cavity magnon-polaritons (CMPs) and related to the transition between states with large and small number of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible shift of the cavitys central frequency and more appreciable shifts of the magnon modes. We derive an analytical relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and find that it agrees very well with the experimental results of the Kittel mode. Our study paves the way to explore nonlinear effects in the cavity-magnon system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا