ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersive readout of a weakly coupled qubit via the parity-time-symmetric phase transition

130   0   0.0 ( 0 )
 نشر من قبل Guo-Qiang Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For some cavity-quantum-electrodynamics systems, such as a single electron spin coupled to a passive cavity, it is challenging to reach the strong-coupling regime. In such a weak-coupling regime, the conventional dispersive readout technique cannot be used to resolve the quantum states of the spin. Here we propose an improved dispersive readout method to measure the quantum states of a weakly coupled qubit by harnessing either one or two auxiliary cavities linearly coupled to the passive cavity containing the qubit. With appropriate parameters in both cases, the system excluding the qubit can exhibit a parity-time-symmetric phase transition at the exceptional point (EP). Because the EP can amplify the perturbation induced by the qubit and the parity-time symmetry can narrow the linewidths of the peaks in the transmission spectrum of the passive cavity, we can measure the quantum states of the weakly coupled qubit via this transmission spectrum. Owing to the weak coupling between the qubit and the passive cavity, the backaction due to the measurement of the qubit can also be reduced in comparison with the conventional dispersive readout technique in the strong-coupling regime.



قيم البحث

اقرأ أيضاً

204 - Ke Liu , Lei Tan , C.-H Lv 2014
The features of superfluid-Mott insulator phase transition in the array of dissipative nonlinear cavities are analyzed. We show analytically that the coupling to the bath can be reduced to renormalizing the eigenmodes of atom-cavity system. This give s rise to a localizing effect and drives the system into mixed states. For the superfluid state, a dynamical instability will lead to a sweeping to a localized state of photons. For the Mott state, a dissipation-induced fluctuation will suppress the restoring of long-range phase coherence driven by interaction.
We analyze a readout scheme for Majorana qubits based on dispersive coupling to a resonator. We consider two variants of Majorana qubits: the Majorana transmon and the Majorana box qubit. In both cases, the qubit-resonator interaction can produce siz eable dispersive shifts in the MHz range for reasonable system parameters, allowing for submicrosecond readout with high fidelity. For Majorana transmons, the light-matter interaction used for readout manifestly conserves Majorana parity, which leads to a notion of quantum nondemolition (QND) readout that is stronger than for conventional charge qubits. In contrast, Majorana box qubits only recover an approximately QND readout mechanism in the dispersive limit where the resonator detuning is large. We also compare dispersive readout to longitudinal readout for the Majorana box qubit. We show that the latter gives faster and higher fidelity readout for reasonable parameters, while having the additional advantage of being manifestly QND, and so may prove to be a better readout mechanism for these systems.
We study the parity-symmetry-breaking quantum phase transition (QPT) in a cavity magnonic system driven by a parametric field, where the magnons in a ferrimagnetic yttrium-iron-garnet sphere strongly couple to a microwave cavity. With appropriate par ameters, this cavity magnonic system can exhibit a rich phase diagram, including the parity-symmetric phase, parity-symmetry-broken phase, and bistable phase. When increasing the drive strength beyond a critical threshold, the cavity magnonic system undergoes either a first- or second-order nonequilibrium QPT from the parity-symmetric phase with microscopic excitations to the parity-symmetry-broken phase with macroscopic excitations, depending on the parameters of the system. Our work provides an alternate way to engineer the QPT in a hybrid quantum system containing the spin ensemble in a ferri- or ferromagnetic material with strong exchange interactions.
The parametric phase-locked oscillator (PPLO), also known as a parametron, is a resonant circuit in which one of the reactances is periodically modulated. It can detect, amplify, and store binary digital signals in the form of two distinct phases of self-oscillation. Indeed, digital computers using PPLOs based on a magnetic ferrite ring or a varactor diode as its fundamental logic element were successfully operated in 1950s and 1960s. More recently, basic bit operations have been demonstrated in an electromechanical resonator, and an Ising machine based on optical PPLOs has been proposed. Here, using a PPLO realized with Josephson-junction circuitry, we demonstrate the demodulation of a microwave signal digitally modulated by binary phase-shift keying. Moreover, we apply this demodulation capability to the dispersive readout of a superconducting qubit. This readout scheme enables a fast and latching-type readout, yet requires only a small number of readout photons in the resonator to which the qubit is coupled, thus featuring the combined advantages of several disparate schemes. We have achieved high-fidelity, single-shot, and non-destructive qubit readout with Rabi-oscillation contrast exceeding 90%, limited primarily by the qubits energy relaxation.
In dispersive readout schemes, qubit-induced nonlinearity typically limits the measurement fidelity by reducing the signal-to-noise ratio (SNR) when the measurement power is increased. Contrary to seeing the nonlinearity as a problem, here we propose to use it to our advantage in a regime where it can increase the SNR. We show analytically that such a regime exists if the qubit has a many-level structure. We also show how this physics can account for the high-fidelity avalanchelike measurement recently reported by Reed {it et al.} [arXiv:1004.4323v1].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا