ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider nonstandard interactions of neutrinos with electrons arising from a new light spin-1 particle with mass of tens of GeV or lower and couplings to the neutrinos and electron. This boson is not necessarily a gauge boson and is assumed to hav e no mixing with standard-model gauge bosons. Adopting a model-independent approach, we study constraints on the flavor-conserving and -violating couplings of the boson with the leptons from a number of experimental data. Specifically, we take into account the (anti)neutrino-electron scattering and e^+ e^- -> nu nubar gamma measurements and keep explicitly the dependence on the new particle mass in all calculations. We find that one of the two sets of data can provide the stronger constraints, depending on the mass and width of the boson. Also, we evaluate complementary constraints on its separate flavor-conserving couplings to the electron and neutrinos from other latest experimental results.
We explore a Z boson with family-nonuniversal couplings to charged leptons. The general effect of Z-Z mixing, of both kinetic and mass types, is included in the analysis. Adopting a model-independent approach, we perform a comprehensive study of cons traints on the leptonic Z couplings from currently available experimental data on a number of flavor-conserving and flavor-changing transitions. Detailed comparisons are made to extract the most stringent bounds on the leptonic couplings. Such information is fed into predictions of various processes that may be experimentally probed in the near future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا