ترغب بنشر مسار تعليمي؟ اضغط هنا

In spite of both technical and fundamental importance, reversal of a macroscopic magnetization by an electric field (E) has been limitedly realized and remains as one of great challenges. Here, we report the realization of modulation and reversal of large magnetization (M) by E in a multiferroic crystal Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22, in which a transverse conical spin state exhibits a remanent M and electric polarization below ~150 K. Upon sweeping E between +- 2 MV/m, M is quasi-linearly varied between +- 2 {mu}B/f.u., resulting in the M reversal. Moreover, the remanent M shows non-volatile changes of {Delta}M = +- 0.15 {mu}B/f.u., depending on the history of the applied electric fields. The large modulation and the non-volatile two-states of M at zero magnetic field are observable up to ~150 K where the transverse conical spin state is stabilized. Nuclear magnetic resonance measurements provide microscopic evidences that the electric field and the magnetic field play an equivalent role, rendering the volume of magnetic domains change accompanied by the domain wall motion. The present findings point to a new pathway for realizing the large magnetization reversal by electric fields at fairly high temperatures.
We find the realization of large converse magnetoelectric (ME) effects at room temperature in a multiferroic hexaferrite Ba$_{0.52}$Sr$_{2.48}$Co$_{2}$Fe$_{24}$O$_{41}$ single crystal, in which rapid change of electric polarization in low magnetic fi elds (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62 $mu$$_{B}$/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients.
In contrast to the Pb-based magnetoelectric laminates (MELs), we find in the BaTiO3 and NiFe2O4 laminates (number of layers n = 5-25) that the longitudinal magnetoelectric (ME) voltage coefficient Alpha E33 becomes much larger than the transverse one due to preferential alignment of magnetic moments along the NiFe2O4 plane. Moreover, upon decreasing each layer thickness down to 15 um, we realize enhanced Alpha E33 up to 18 mV/ (cm Oe) and systematic increase of the ME sensitivity in proportion to n to achieve the largest in the Pb-free MELs (400*10^-6V/Oe), thereby providing pathways for tailoring ME coupling in mass-produced, environment friendly laminates.
We show that low field magnetoelectric (ME) properties of helimagnets Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 can be efficiently tailored by Al-substitution level. As x increases, the critical magnetic field for switching electric polarization is systematically reduced from ~1 T down to ~1 mT, and the ME susceptibility is greatly enhanced to reach a giant value of 2.0 x 10^4 ps/m at an optimum x = 0.08. We find that control of nontrivial orbital moment in the octahedral Fe sites through the Al-substitution is crucial for fine tuning of magnetic anisotropy and obtaining the conspicuously improved ME characteristics.
The vortex phase diagrams of NdFeAsO0.85F0.15 and NdFeAsO0.85 superconductors are determined from the analysis of resistivity and current-voltage (I-V) measurements in magnetic fields up to 9 T. A clear vortex glass to liquid transition is identified only in the oxygen deficient NdFeAsO0.85, in which I-V curves can be well scaled onto liquid and glass branches consistent with the vortex glass theory. With increasing magnetic field, the activation energy U0, deduced from the Arrhenius plots of resistivity based on the thermally activated flux-flow model (TAFF), decays more quickly for NdFeAsO0.85F0.15 than for NdFeAsO0.85. Moreover, the irreversibility field Hirr of NdFeAsO0.85 increases more rapidly than that of NdFeAsO0.85F0.15 with decreasing temperature. These observations evidence the strong vortex pinning effects, presumably caused by the enhanced defects and disorders in the oxygen deficient NdFeAsO0.85. It is inferred that the enhanced defects and disorder can be also responsible for the vortex glass to liquid transition in the NdFeAsO0.85.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا