ﻻ يوجد ملخص باللغة العربية
We find the realization of large converse magnetoelectric (ME) effects at room temperature in a multiferroic hexaferrite Ba$_{0.52}$Sr$_{2.48}$Co$_{2}$Fe$_{24}$O$_{41}$ single crystal, in which rapid change of electric polarization in low magnetic fields (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62 $mu$$_{B}$/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients.
We demonstrate spin-accumulation signals controlled by the gate voltage in a metal-oxide-semiconductor field effect transistor structure with a Si channel and a CoFe/$n^{+}$-Si contact at room temperature. Under the application of a back-gate voltage
Bismuth ferrite, BiFeO3, is the only known room-temperature multiferroic material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric orders are intimately coupled.
We show that room temperature resistivity of Ba0.5Sr1.5Zn2Fe12O22 single crystals increases by more than three orders of magnitude upon being subjected to optimized heat treatments. The increase in the resistivity allows the determination of magnetic
We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance change
Polar textures have attracted significant attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second harmonic generation based circular dichroism, we demonstrate deterministic and reversible con