ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how the switching-on of an electron transport through a system of two parallel quantum dots embedded in a short quantum wire in a photon cavity can trigger coupled Rabi and collective electron-photon oscillations. We select the initial state of the system to be an eigenstate of the closed system containing two Coulomb interacting electrons with possibly few photons of a single cavity mode. The many-level quantum dots are described by a continuous potential. The Coulomb interaction and the para- and dia-magnetic electron-photon interactions are treated by exact diagonalization in a truncated Fock-space. To identify the collective modes the results are compared for an open and a closed system with respect to the coupling to external electron reservoirs, or leads. We demonstrate that the vacuum Rabi oscillations can be seen in transport quantities as the current in and out of the system.
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration.
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.
In order to understand the interactions between active galactic nuclei (AGN) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70{mu}m observations in the COSMOS (Cosmic Evolution Survey) fiel d. All of our data are obtained from the archive, X-ray point source catalogs from Chandra and XMM-Newton observations; far-infrared 70{mu}m point source catalog from Spitzer-MIPS observations. Although the IRAC [3.6{mu}m]-[4.5{mu}m] vs. [5.8{mu}m]-[8.0{mu}m] colours of our sample indicate that only ~63% of our sources would be classified as AGN, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000{mu}m) shows that all of the sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From the analysis of the X-ray hardness ratio, we find that sources with both 70{mu}m and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray selected source population, suggesting the presence of more X-ray absorption in the 70{mu}m detected sources. In addition, we find that the observed far-infrared colours of 70{mu}m detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.
127 - Yi-Lin Cheng , Siu-Hung Ng 2010
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that non-semisimple Hopf algebras of dimensions 20, 28 and 44 are pointed or their duals are pointed, and this completes the classification of Hopf algebras in these dimensions.
We have carried out a systematic study of the PbO-type compound FeSe_{1-x}Te_x (x = 0~1), where Te substitution effect on superconductivity is investigated. It is found that superconducting transition temperature reaches a maximum of Tc=15.2K at abou t 50% Te substitution. The pressure-enhanced Tc of FeSe0.5Te0.5 is more than 10 times larger than that of FeSe. Interestingly, FeTe is no longer superconducting. A low temperature structural distortion changes FeTe from triclinic symmetry to orthorhombic symmetry. We believe that this structural change breaks the magnetic symmetry and suppresses superconductivity in FeTe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا