ﻻ يوجد ملخص باللغة العربية
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or
Hamiltonian Monte Carlo (HMC) is an efficient Bayesian sampling method that can make distant proposals in the parameter space by simulating a Hamiltonian dynamical system. Despite its popularity in machine learning and data science, HMC is inefficien
Boson sampling is a promising candidate for quantum supremacy. It requires to sample from a complicated distribution, and is trusted to be intractable on classical computers. Among the various classical sampling methods, the Markov chain Monte Carlo
Quantum annealing is a practical approach to execute the native instruction set of the adiabatic quantum computation model. The key of running adiabatic algorithms is to maintain a high success probability of evolving the system into the ground state
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed f