ترغب بنشر مسار تعليمي؟ اضغط هنا

We optimize the area and latency of Shors factoring while simultaneously improving fault tolerance through: (1) balancing the use of ancilla generators, (2) aggressive optimization of error correction, and (3) tuning the core adder circuits. Our cust om CAD flow produces detailed layouts of the physical components and utilizes simulation to analyze circuits in terms of area, latency, and success probability. We introduce a metric, called ADCR, which is the probabilistic equivalent of the classic Area-Delay product. Our error correction optimization can reduce ADCR by an order of magnitude or more. Contrary to conventional wisdom, we show that the area of an optimized quantum circuit is not dominated exclusively by error correction. Further, our adder evaluation shows that quantum carry-lookahead adders (QCLA) beat ripple-carry adders in ADCR, despite being larger and more complex. We conclude with what we believe is one of most accurate estimates of the area and latency required for 1024-bit Shors factorization: 7659 mm$^{2}$ for the smallest circuit and $6 * 10^8$ seconds for the fastest circuit.
We analyze circuits for a number of kernels from popular quantum computing applications, characterizing the hardware resources necessary to take ancilla preparation off the critical path. The result is a chip entirely dominated by ancilla generation circuits. To address this issue, we introduce optimized ancilla factories and analyze their structure and physical layout for ion trap technology. We introduce a new quantum computing architecture with highly concentrated data-only regions surrounded by shared ancilla factories. The results are a reduced dependence on costly teleportation, more efficient distribution of generated ancillae and more than five times speedup over previous proposals.
We present a computer-aided design flow for quantum circuits, complete with automatic layout and control logic extraction. To motivate automated layout for quantum circuits, we investigate grid-based layouts and show a performance variance of four ti mes as we vary grid structure and initial qubit placement. We then propose two polynomial-time design heuristics: a greedy algorithm suitable for small, congestion-free quantum circuits and a dataflow-based analysis approach to placement and routing with implicit initial placement of qubits. Finally, we show that our dataflow-based heuristic generates better layouts than the state-of-the-art automated grid-based layout and scheduling mechanism in terms of latency and potential pipelinability, but at the cost of some area.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا