ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first observation of a flavor-singlet scalar meson as light as the pion in $N_f=8$ QCD on the lattice, using the Highly Improved Staggered Quark action. Such a light scalar meson can be regarded as a composite Higgs with mass 125 GeV. In accord with our previous lattice results showing that the theory exhibits walking behavior, the light scalar may be a technidilaton, a pseudo Nambu-Goldstone boson of the approximate scale symmetry in walking technicolor.
We report the calculation of the flavor-singlet scalar in the SU(3) gauge theory with the degenerate twelve fermions in the fundamental representation using a HISQ-type action at a fixed $beta$. In order to reduce the large statistical error coming f rom the vacuum-subtracted disconnected correlator, we employ a noise reduction method and a large number of configurations. We observe that the flavor-singlet scalar is lighter than the pion in this theory from the calculations with the fermion bilinear and gluonic operators. This peculiar feature is considered to be due to the infrared conformality of this theory, and it is a promissing signal for a walking technicolor, where a light composite Higgs boson is expected to emerge by approximate conformal dynamics.
We measure glueball masses and the string tension in twelve-flavour QCD, aiming at comparing the emerging gluonic spectrum to the mesonic one. When approaching the critical surface at zero quark mass, the hierarchy of masses in the different sectors of the spectrum gives a new handle to determine the existence of an infrared fixed point. We describe the details of our gluonic measurements and the results obtained on a large number of gauge configurations generated with the HISQ action. In particular, we focus on the scalar glueball and its mixing with a flavour-singlet fermionic state, which is lighter than the pseudoscalar (would-be pion) state. The results are interesting in view of a light composite Higgs boson in walking technicolor theories.
In search for a composite Higgs boson (techni-dilaton) in the walking technicolor, we present our preliminary results on the first observation of a light flavor-singlet scalar in a candidate theory for the walking technicolor, the Nf=8 QCD, which was found in our previous paper to have spontaneous chiral symmetry breaking together with remnants of the conformality. Based on simulations with the HISQ-type action on several lattice sizes with various fermion masses, we find evidence of a flavor-singlet scalar meson with mass comparable to that of the Nambu-Goldstone pion in both the small fermion-mass region, where chiral perturbation theory works, and the intermediate fermion-mass region where the hyperscaling relation holds. We further discuss its chiral limit extrapolation in comparison with other states studied in our previous paper: the scalar has a mass much smaller than that of the vector meson, which is compared to the Nambu-Goldstone pion having a vanishing mass in that limit.
Based on lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The sa me state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study, that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson (technidilaton) in walking technicolor theories.
We investigate chiral and conformal properties of the lattice QCD with eight flavors (Nf=8) through meson spectrum using the Highly Improved Staggered Quark (HISQ) action. We also compare our results with those of Nf=12 and Nf=4 which we study on the same systematics. We find that the decay constant F_pi of the pseudoscalar meson pion is non-zero, with its mass M_pi consistent with zero, both in the chiral limit extrapolation of the chiral perturbation theory (ChPT). We also measure other quantities which we find are in accord with the pi data results: The rho meson mass is consistent with non-zero in the chiral limit, and so is the chiral condensate, with its value neatly coinciding with that from the Gell-Mann-Oakes-Renner relation in the chiral limit. Thus our data for the Nf=8 QCD are consistent with the spontaneously broken chiral symmetry. Remarkably enough, while the Nf=8 data near the chiral limit are well described by the ChPT, those for the relatively large fermion bare mass m_f away from the chiral limit actually exhibit a finite-size hyperscaling relation, suggesting a large anomalous dimension gamma_m ~ 1. This implies that there exists a remnant of the infrared conformality, and suggests that a typical technicolor (one-family model) as modeled by the Nf=8 QCD can be a walking technicolor theory having an approximate scale invariance with large anomalous dimension gamma_m ~ 1.
The LatKMI collaboration is studying systematically the dynamical properties of N_f = 4,8,12,16 SU(3) gauge theories using lattice simulations with (HISQ) staggered fermions. Exploring the spectrum of many-flavour QCD, and its scaling near the chiral limit, is mandatory in order to establish if one of these models realises the Walking Technicolor scenario. Although lattice technologies to study the mesonic spectrum are well developed, scalar flavour-singlet states still require extra effort to be determined. In addition, gluonic observables usually require large-statistic simulations and powerful noise-reduction techniques. In the following, we present useful spectroscopic methods to investigate scalar glueballs and scalar flavour-singlet mesons, together with the current status of the scalar spectrum in N_f = 12 QCD from the LatKMI collaboration.
We present the report of the LatKMI collaboration on the lattice QCD simulation for the cases of 4 and 8 flavors. The Nf=8 in particular is interesting from the model-building point of view: The typical walking technicolor model with the large anomal ous dimension is the so-called one-family model (Farhi-Susskind model). Thus we explore the walking behavior in LQCD with 8 HISQ quarks by comparing with the 4-flavor case (in which the chiral symmetry is spontaneously broken). We report preliminary results on the spectrum, analyzed through the chiral perturbation theory and the finite-size hyperscaling, and we discuss the availability of the Nf=8 QCD to the phenomenology.
We present our result of the many-flavor QCD. Information of the phase structure of many-flavor SU(3) gauge theory is of great interest, since the gauge theories with the walking behavior near the infrared fixed point are candidates of new physics fo r the origin of the dynamical electroweak symmetry breaking. We study the SU(3) gauge theories with 12 and 16 fundamental fermions. Utilizing the HISQ type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant of the pseudoscalar meson and the mass of the vector meson as well at several values of lattice spacing and fermion mass. The finite size scaling test in the conformal hypothesis is also performed. Our data is consistent with the conformal scenario for Nf=12. We obtain the mass anomalous dimension $gamma_m sim 0.4-0.5$. An update of $N_f=16$ study is also shown.
We study infrared conformality of the twelve-flavor QCD on the lattice. Utilizing the highly improved staggered quarks (HISQ) type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant o f a pseudoscalar meson and the mass of a vector meson as well at several values of lattice spacing and fermion mass. Our result is consistent with the conformal hypothesis for the mass anomalous dimension $gamma_m sim 0.4-0.5$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا