ترغب بنشر مسار تعليمي؟ اضغط هنا

Cubic boron phosphide BP has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio ca lculations. The data on Raman shift as a function of pressure, combined with equation-of-state data, allowed us to estimate the Gruneisen parameters of the TO and LO modes of zinc-blende structure, {gamma}GTO = 1.16 and {gamma}GLO = 1.04, just like in the case of other AIIIBV diamond-like phases, for which {gamma}GTO > {gamma}GLO = 1. We also established that the pressure dependence of the effective electro-optical constant {alpha} is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ~0.25 at 0.1 MPa to ITO/ILO ~2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.
The 300 K equation of state of cubic (zinc-blende) boron phosphide BP has been studied by in situ single-crystal X-ray diffraction with synchrotron radiation up to 55 GPa. The measurements have been performed under quasi-hydrostatic conditions using a Ne pressure medium in a diamond anvil cell. A fit of the experimental p-V data to the Vinet equation of state yields the bulk modulus B0 of 179(1) GPa with its pressure derivative of 3.3(1). These values are in a good agreement with previous elastic measurements, as well as with semiempirical estimations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا