ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - Zhuo Ye , Feng Zhang , Yang Sun 2015
Phase selection in deeply undercooled liquids and devitrified glasses during heating involves complex interplay between the barriers to nucleation and the ability for these nuclei to grow. During the devitrification of glassy alloys, complicated meta stable structures often precipitate instead of simpler, more stable compounds. Here, we access this unconventional type of phase selections by investigating an Al-10%Sm system, where a complicated cubic structure first precipitates with a large lattice parameter of 1.4 nm. We not only solve the structure of this big cubic phase containing ~140 atoms but establish an explicit interconnection between the structural orderings of the amorphous alloy and the cubic phase, which provides a low-barrier nucleation pathway at low temperatures. The surprising rapid growth of the crystal is attributed to its high tolerance to point defects, which minimize the short-scale atomic rearrangements to form the crystal. Our study suggests a new scenario of devitrification, where phase transformation proceeds initially without partitioning through a complex intermediate crystal phase.
We have investigated the negative-parity states and electromagnetic transitions in $^{151,153}$Ho and $^{151,153}$Dy within the framework of the interacting boson fermion model 2 (IBFM-2). Spin assignments for some states with uncertain spin are made based on this calculation. Calculated excitation energies, electromagnetic transitions and branching ratios are compared with available experimental data and a good agreement is obtained. The model wave functions have been used to study $beta$-decays from Ho to Dy isotones, and the calculated $log ft$ values are close to the experimental data.
45 - Yang Liu , Gui Lu Long , Yang Sun 2007
In this Letter, we present two analytic expressions that most generally simulate $n$-qubit controlled-$U$ gates with standard one-qubit gates and CNOT gates using exponential and polynomial complexity respectively. Explicit circuits and general expre ssions of decomposition are derived. The exact numbers of basic operations in these two schemes are given using gate counting technique.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا