ترغب بنشر مسار تعليمي؟ اضغط هنا

The paper deals with a formally self-adjoint first order linear differential operator acting on m-columns of complex-valued half-densities over an n-manifold without boundary. We study the distribution of eigenvalues in the elliptic setting and the p ropagator in the hyperbolic setting, deriving two-term asymptotic formulae for both. We then turn our attention to the special case of a two by two operator in dimension four. We show that the geometric concepts of Lorentzian metric, Pauli matrices, spinor field, connection coefficients for spinor fields, electromagnetic covector potential, Dirac equation and Dirac action arise naturally in the process of our analysis.
Consider a formally self-adjoint first order linear differential operator acting on pairs (2-columns) of complex-valued scalar fields over a 4-manifold without boundary. We examine the geometric content of such an operator and show that it implicitly contains a Lorentzian metric, Pauli matrices, connection coefficients for spinor fields and an electromagnetic covector potential. This observation allows us to give a simple representation of the massive Dirac equation as a system of four scalar equations involving an arbitrary two-by-two matrix operator as above and its adjugate. The point of the paper is that in order to write down the Dirac equation in the physically meaningful 4-dimensional hyperbolic setting one does not need any geometric constructs. All the geometry required is contained in a single analytic object - an abstract formally self-adjoint first order linear differential operator acting on pairs of complex-valued scalar fields.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا