ترغب بنشر مسار تعليمي؟ اضغط هنا

A major uncertainty in the structure and dynamics of magnetized, radiation pressure dominated neutron star accretion columns in X-ray pulsars and pulsating ultraluminous X-ray sources is that they are thought to be subject to the photon bubble instab ility. We present the results of two dimensional radiation relativistic magnetohydrodynamic simulations of a non-accreting, static atmosphere to study the development of this instability assuming isotropic Thomson scattering in the slow diffusion regime that is relevant to neutron star accretion columns. Photon bubbles generally grow faster toward shorter wavelengths, until a maximum growth rate is achieved at the radiation viscosity length scale, which is generally quite small and requires high numerical resolution to simulate. We confirm the consistency between our simulation results and linear theory in detail, and show that the nonlinear evolution inevitably leads to collapse of the atmosphere with the higher resolution simulation collapsing faster due to the presence of shorter length scale nonlinear structures. At least in static atmospheres with horizontally periodic boundary conditions, this resolution dependence may make simulations of the nonlinear dynamics of photon bubble instability in neutron star accretion columns challenging. It remains to be seen whether these difficulties will persist upon inclusion of an accretion flow through the top and magnetically-confined horizontal boundaries through which photons can escape. Our results here provide a foundation for such future work.
Cosmic ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we post-process a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple purely diffusive formalism with constant scattering coefficient, to a physically-motivated model in which the scattering coefficient is set by critical balance between streaming-driven Alfven wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of $sim 1$ GeV (high-energy) and $sim 30$~MeV (low-energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density, hot phase, while diffusion and streaming are more important in higher density, cooler phases. Our physically-motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density $n_mathrm{H} sim 0.01, mathrm{cm}^{-3}$. Ion-neutral damping of Alfven waves results in strong diffusion and nearly uniform cosmic ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.
The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiters envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we observe significant mass recycling on the orbital timescale. For a radiative envelope, recycling can only penetrate from the disc surface until $sim$0.1-0.2 planetary Hill radii, while for a convective envelope, the convective motion can dredge up the deeper part of the envelope so that the entire convective envelope is recycled efficiently. This recycling, however, has only limited effects on the envelopes thermal structure. The radiative envelope embedded in the disc has identical structure as the isolated envelope. The convective envelope has a slightly higher density when it is embedded in the disc. We introduce a modified 1D approach which can fully reproduce our 3D simulations. With our updated opacity and 1D model, we recompute Jupiters envelope accretion with a 10 $M_{oplus}$ core, and the timescale to runaway accretion is shorter than the disc lifetime as in prior studies. Finally, we discuss the implications of the efficient recycling on the observed chemical abundances of the planetary atmosphere (especially for super-Earths and mini-Neptunes).
We use analytic calculations and time-dependent spherically-symmetric simulations to study the properties of isothermal galactic winds driven by cosmic-rays (CRs) streaming at the Alfven velocity. The simulations produce time-dependent flows permeate d by strong shocks; we identify a new linear instability of sound waves that sources these shocks. The shocks substantially modify the wind dynamics, invalidating previous steady state models: the CR pressure $p_c$ has a staircase-like structure with $dp_c/dr simeq 0$ in most of the volume, and the time-averaged CR energetics are in many cases better approximated by $p_c propto rho^{1/2}$, rather than the canonical $p_c propto rho^{2/3}$. Accounting for this change in CR energetics, we analytically derive new expressions for the mass-loss rate, momentum flux, wind speed, and wind kinetic power in galactic winds driven by CR streaming. We show that streaming CRs are ineffective at directly driving cold gas out of galaxies, though CR-driven winds in hotter ISM phases may entrain cool gas. For the same physical conditions, diffusive CR transport (Paper I) yields mass-loss rates that are a few-100 times larger than streaming transport, and asymptotic wind powers that are a factor of $simeq 4$ larger. We discuss the implications of our results for galactic wind theory and observations; strong shocks driven by CR-streaming-induced instabilities produce gas with a wide range of densities and temperatures, consistent with the multiphase nature of observed winds. We also quantify the applicability of the isothermal gas approximation for modeling streaming CRs and highlight the need for calculations with more realistic thermodynamics.
307 - Bryance Oyang , Yan-Fei Jiang , 2021
We present the results of a 3D global magnetohydrodynamic (MHD) simulation of an AM CVn system that was aimed at exploring eccentricity growth in the accretion disc self-consistently from a first principles treatment of the MHD turbulence. No signifi cant eccentricity growth occurs in the simulation. In order to investigate the reasons why, we ran 2D alpha disc simulations with alpha values of 0.01, 0.1, and 0.2, and found that only the latter two exhibit significant eccentricity growth. We present an equation expressing global eccentricity evolution in terms of contributing forces and use it to analyze the simulations. As expected, we find that the dominant term contributing to the growth of eccentricity is the tidal gravity of the companion star. In the 2D simulations, the alpha viscosity directly contributes to eccentricity growth. In contrast, the overall magnetic forces in the 3D simulation damp eccentricity. We also analyzed the mode-coupling mechanism of Lubow, and confirmed that the spiral wave excited by the 3:1 resonance was the dominant contributor to eccentricity growth in the 2D $alpha=0.1$ simulations, but other waves also contribute significantly. We found that the $alpha=0.1$ and 0.2 simulations had more relative mass at larger radii compared to the $alpha=0.01$ and 3D MHD simulation, which also had an effective $alpha$ of 0.01. This suggests that in 3D MHD simulations without sufficient poloidal magnetic flux, MRI turbulence does not saturate at a high enough $alpha$ to spread the disc to large enough radii to reproduce the superhumps observed in real systems.
231 - Yan-Fei Jiang 2021
We describe a new algorithm to solve the time dependent, frequency integrated radiation transport (RT) equation implicitly, which is coupled to an explicit solver for equations of magnetohydrodynamics (MHD) using {sf Athena++}. The radiation filed is represented by specific intensities along discrete rays, which are evolved using a conservative finite volume approach for both cartesian and curvilinear coordinate systems. All the terms for spatial transport of photons and interactions between gas and radiation are calculated implicitly together. An efficient Jacobi-like iteration scheme is used to solve the implicit equations. This removes any time step constrain due to the speed of light in RT. We evolve the specific intensities in the lab frame to simplify the transport step. The lab-frame specific intensities are transformed to the co-moving frame via Lorentz transformation when the source term is calculated. Therefore, the scheme does not need any expansion in terms of $v/c$. The radiation energy and momentum source terms for the gas are calculated via direct quadrature in the angular space. The time step for the whole scheme is determined by the normal Courant -- Friedrichs -- Lewy condition in the MHD module. We provide a variety of test problems for this algorithm including both optically thick and thin regimes, and for both gas and radiation pressure dominated flows to demonstrate its accuracy and efficiency.
189 - Yan-Fei Jiang , Omer Blaes 2020
We study the structure of accretion disks around supermassive black holes in the radial range $30sim 100$ gravitational radii, using a three dimensional radiation magneto-hydrodynamic simulation. For typical conditions in this region of Active Galact ic Nuclei (AGN), the Rosseland mean opacity is expected to be larger than the electron scattering value. We show that the iron opacity bump causes the disk to be convective unstable. Turbulence generated by convection puffs up the disk due to additional turbulent pressure support and enhances the local angular momentum transport. This also results in strong fluctuations in surface density and heating of the disk. The opacity drops with increasing temperature and convection is suppressed. The disk cools down and the whole process repeats again. This causes strong oscillations of the disk scale height and luminosity variations by more than a factor of $approx 3-6$ over a few years timescale. Since the iron opacity bump will move to different locations of the disk for black holes with different masses and accretion rates, we suggest that this is a physical mechanism that can explain the variability of AGN with a wide range of amplitudes over a time scale of years to decades.
FU Ori is the prototype of FU Orionis systems which are outbursting protoplanetary disks. Magnetic fields in FU Oris accretion disks have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Oris inner accretion disk. We find that (1) when the disk is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z$sim$R, similar to the surface accretion mechanism in previous locally-isothermal MHD simulations. (2) A moderate disk wind is launched in the vertical field simulations with a terminal speed of $sim$300-500 km/s and a mass loss rate of 1-10% the disk accretion rate, which is consistent with observations. Disk wind fails to be launched in simulations with net toroidal magnetic fields. (3) The disk photosphere at the unit optical depth can be either in the wind launching region or the accreting surface region. Magnetic fields have drastically different directions and magnitudes between these two regions. Our fiducial model agrees with previous optical Zeeman observations regarding both the field directions and magnitudes. On the other hand, simulations indicate that future Zeeman observations at near-IR wavelengths or towards other FU Orionis systems may reveal very different magnetic field structures. (4) Due to energy loss by the disk wind, the disk photosphere temperature is lower than that predicted by the thin disk theory, and the previously inferred disk accretion rate may be lower than the real accretion rate by a factor of $sim$2-3.
ALMA surveys have suggested that the dust in Class II disks may not be enough to explain the averaged solid mass in exoplanets, under the assumption that the mm disk continuum emission is optically thin. This optically thin assumption seems to be sup ported by recent DSHARP observations where the measured optical depths of spatially resolved disks are mostly less than one. However, we point out that dust scattering can considerably reduce the emission from an optically thick region. If that scattering is ignored, the optical depth will be considerably underestimated. An optically thick disk with scattering can be misidentified as an optically thin disk. Dust scattering in more inclined disks can reduce the intensity even further, making the disk look even fainter. The measured optical depth of $sim$0.6 in several DSHARP disks can be naturally explained by optically thick dust with an albedo of $sim$0.9 at 1.25 mm. Using the DSHARP opacity, this albedo corresponds to a dust population with the maximum grain size ($s_{max}$) of 0.1-1 mm. For optically thick scattering disks, the measured spectral index $alpha$ can be either larger or smaller than 2 depending on if the dust albedo increases or decreases with wavelength. Using the DSHARP opacity, $alpha<2$ corresponds to $s_{max}$ of 0.03-0.3 mm. We describe how this optically thick scattering scenario could explain the observed scaling between submm continuum sizes and luminosities, and might help ease the tension between the dust size constraints from polarization and dust continuum measurements. We suggest that a significant amount of disk mass can be hidden from ALMA observations at short millimeter wavelengths. For compact disks smaller than 30 au, we can easily underestimate the dust mass by more than a factor of 10. Longer wavelength observations (e.g. VLA or SKA) are desired to probe the dust mass in disks.
We use global three dimensional radiation magneto-hydrodynamic simulations to study the properties of inner regions of accretion disks around a 5times 10^8 solar mass black hole with mass accretion rates reaching 7% and 20% of the Eddington value. Th is region of the disk is supported by magnetic pressure with surface density significantly smaller than the values predicted by the standard thin disk model but with a much larger disk scale height. The disks do not show any sign of thermal instability over many thermal time scales. More than half of the accretion is driven by radiation viscosity in the optically thin corona region for the lower accretion rate case, while accretion in the optically thick part of the disk is driven by the Maxwell and Reynolds stresses from MRI turbulence. Coronae with gas temperatures > 10^8 K are generated only in the inner approx 10 gravitational radii in both simulations, being more compact in the higher accretion rate case. In contrast to the thin disk model, surface density increases with increasing mass accretion rate, which causes less dissipation in the optically thin region and a relatively weaker corona. The simulation results may explain the formation of X-ray coronae in Active Galactic Nuclei (AGNs), the compact size of such coronae, and the observed trend of optical to X-ray luminosity with Eddington ratio for many AGNs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا