ترغب بنشر مسار تعليمي؟ اضغط هنا

151 - Defang Chen , Can Wang , Yan Feng 2021
Knowledge distillation is a generalized logits matching technique for model compression. Their equivalence is previously established on the condition of $textit{infinity temperature}$ and $textit{zero-mean normalization}$. In this paper, we prove tha t with only $textit{infinity temperature}$, the effect of knowledge distillation equals to logits matching with an extra regularization. Furthermore, we reveal that an additional weaker condition -- $textit{equal-mean initialization}$ rather than the original $textit{zero-mean normalization}$ already suffices to set up the equivalence. The key to our proof is we realize that in modern neural networks with the cross-entropy loss and softmax activation, the mean of back-propagated gradient on logits always keeps zero.
We present DeClaW, a system for detecting, classifying, and warning of adversarial inputs presented to a classification neural network. In contrast to current state-of-the-art methods that, given an input, detect whether an input is clean or adversar ial, we aim to also identify the types of adversarial attack (e.g., PGD, Carlini-Wagner or clean). To achieve this, we extract statistical profiles, which we term as anomaly feature vectors, from a set of latent features. Preliminary findings suggest that AFVs can help distinguish among several types of adversarial attacks (e.g., PGD versus Carlini-Wagner) with close to 93% accuracy on the CIFAR-10 dataset. The results open the door to using AFV-based methods for exploring not only adversarial attack detection but also classification of the attack type and then design of attack-specific mitigation strategies.
Although route and exit choice in complex buildings are important aspects of pedestrian behaviour, studies predominantly investigated pedestrian movement in a single level. This paper presents an innovative VR tool that was designed to investigate pe destrian route and exit choice in a multi-story building. This tool supports free navigation and collects pedestrian walking trajectories, head movements and gaze points automatically. An experiment was conducted to evaluate the VR tool from objective standpoints (i.e., pedestrian behaviour) and subjective standpoints (i.e., the feeling of presence, system usability, simulation sickness). The results show that the VR tool allows for accurate collection of pedestrian behavioural data in the complex building. Moreover, the results of the questionnaire report high realism of the virtual environment, high immersive feeling, high usability, and low simulator sickness. This paper contributes by showcasing an innovative approach of applying VR technologies to study pedestrian behaviour in complex and realistic environments.
417 - Ryan Feng , Yu Yao , Ella Atkins 2021
Autonomous vehicles require fleet-wide data collection for continuous algorithm development and validation. The Smart Black Box (SBB) intelligent event data recorder has been proposed as a system for prioritized high-bandwidth data capture. This pape r extends the SBB by applying anomaly detection and action detection methods for generalized event-of-interest (EOI) detection. An updated SBB pipeline is proposed for the real-time capture of driving video data. A video dataset is constructed to evaluate the SBB on real-world data for the first time. SBB performance is assessed by comparing the compression of normal and anomalous data and by comparing our prioritized data recording with a FIFO strategy. Results show that SBB data compression can increase the anomalous-to-normal memory ratio by ~25%, while the prioritized recording strategy increases the anomalous-to-normal count ratio when compared to a FIFO strategy. We compare the real-world dataset SBB results to a baseline SBB given ground-truth anomaly labels and conclude that improved general EOI detection methods will greatly improve SBB performance.
To remove the effects of adversarial perturbations, preprocessing defenses such as pixel discretization are appealing due to their simplicity but have so far been shown to be ineffective except on simple datasets such as MNIST, leading to the belief that pixel discretization approaches are doomed to failure as a defense technique. This paper revisits the pixel discretization approaches. We hypothesize that the reason why existing approaches have failed is that they have used a fixed codebook for the entire dataset. In particular, we find that can lead to situations where images become more susceptible to adversarial perturbations and also suffer significant loss of accuracy after discretization. We propose a novel image preprocessing technique called Essential Features that uses an adaptive codebook that is based on per-image content and threat model. Essential Features adaptively selects a separable set of color clusters for each image to reduce the color space while preserving the pertinent features of the original image, maximizing both separability and representation of colors. Additionally, to limit the adversarys ability to influence the chosen color clusters, Essential Features takes advantage of spatial correlation with an adaptive blur that moves pixels closer to their original value without destroying original edge information. We design several adaptive attacks and find that our approach is more robust than previous baselines on $L_infty$ and $L_2$ bounded attacks for several challenging datasets including CIFAR-10, GTSRB, RESISC45, and ImageNet.
140 - Yan Feng , Baoyuan Wu , Yanbo Fan 2020
This work studies black-box adversarial attacks against deep neural networks (DNNs), where the attacker can only access the query feedback returned by the attacked DNN model, while other information such as model parameters or the training datasets a re unknown. One promising approach to improve attack performance is utilizing the adversarial transferability between some white-box surrogate models and the target model (i.e., the attacked model). However, due to the possible differences on model architectures and training datasets between surrogate and target models, dubbed surrogate biases, the contribution of adversarial transferability to improving the attack performance may be weakened. To tackle this issue, we innovatively propose a black-box attack method by developing a novel mechanism of adversarial transferability, which is robust to the surrogate biases. The general idea is transferring partial parameters of the conditional adversarial distribution (CAD) of surrogate models, while learning the untransferred parameters based on queries to the target model, to keep the flexibility to adjust the CAD of the target model on any new benign sample. Extensive experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
Computation Tree Logic (CTL) is one of the central formalisms in formal verification. As a specification language, it is used to express a property that the system at hand is expected to satisfy. From both the verification and the system design point s of view, some information content of such property might become irrelevant for the system due to various reasons, e.g., it might become obsolete by time, or perhaps infeasible due to practical difficulties. Then, the problem arises on how to subtract such piece of information without altering the relevant system behaviour or violating the existing specifications over a given signature. Moreover, in such a scenario, two crucial notions are informative: the strongest necessary condition (SNC) and the weakest sufficient condition (WSC) of a given property. To address such a scenario in a principled way, we introduce a forgetting-based approach in CTL and show that it can be used to compute SNC and WSC of a property under a given model and over a given signature. We study its theoretical properties and also show that our notion of forgetting satisfies existing essential postulates of knowledge forgetting. Furthermore, we analyse the computational complexity of some basic reasoning tasks for the fragment CTL_AF in particular.
120 - Yan Feng , Bin Chen , Tao Dai 2020
Deep product quantization network (DPQN) has recently received much attention in fast image retrieval tasks due to its efficiency of encoding high-dimensional visual features especially when dealing with large-scale datasets. Recent studies show that deep neural networks (DNNs) are vulnerable to input with small and maliciously designed perturbations (a.k.a., adversarial examples). This phenomenon raises the concern of security issues for DPQN in the testing/deploying stage as well. However, little effort has been devoted to investigating how adversarial examples affect DPQN. To this end, we propose product quantization adversarial generation (PQ-AG), a simple yet effective method to generate adversarial examples for product quantization based retrieval systems. PQ-AG aims to generate imperceptible adversarial perturbations for query images to form adversarial queries, whose nearest neighbors from a targeted product quantizaiton model are not semantically related to those from the original queries. Extensive experiments show that our PQ-AQ successfully creates adversarial examples to mislead targeted product quantization retrieval models. Besides, we found that our PQ-AG significantly degrades retrieval performance in both white-box and black-box settings.
97 - Xue Yang , Yan Feng , Weijun Fang 2020
Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend such privacy attacks, many noises perturbation methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, in this paper, we propose emph{an efficient model perturbation method for federated learning} to defend reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate the added noises, our method allows the server to recover the true gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all.
The physical, black-box hard-label setting is arguably the most realistic threat model for cyber-physical vision systems. In this setting, the attacker only has query access to the model and only receives the top-1 class label without confidence info rmation. Creating small physical stickers that are robust to environmental variation is difficult in the discrete and discontinuous hard-label space because the attack must both design a small shape to perturb within and find robust noise to fill it with. Unfortunately, we find that existing $ell_2$ or $ell_infty$ minimizing hard-label attacks do not easily extend to finding such robust physical perturbation attacks. Thus, we propose GRAPHITE, the first algorithm for hard-label physical attacks on computer vision models. We show that survivability, an estimate of physical variation robustness, can be used in new ways to generate small masks and is a sufficiently smooth function to optimize with gradient-free optimization. We use GRAPHITE to attack a traffic sign classifier and a publicly-available Automatic License Plate Recognition (ALPR) tool using only query access. We evaluate both tools in real-world field tests to measure its physical-world robustness. We successfully cause a Stop sign to be misclassified as a Speed Limit 30 km/hr sign in 95.7% of physical images and cause errors in 75% of physical images for the ALPR tool.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا