ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on Suzaku observations of large-scale X-ray structures possibly related with the Fermi Bubbles obtained in 2013 with a total duration of ~ 80 ks. The observed regions were the: (i) northern cap (N-cap; l ~ 0 deg, 45 deg < b < 55 deg) seen i n the Mid-band (1.7-4.0 keV) map recently provided by MAXI-SSC and (ii) southeast claw (SE-claw; l ~ 10 deg, -20 deg < b < -10 deg) seen in the ROSAT all-sky map and MAXI-SSC Low-band (0.7-1.7 keV) map. In each region, we detected diffuse X-ray emissions which are represented by a three component plasma model consisting of an unabsorbed thermal component (kT ~ 0.1 keV) from the Local Bubble, absorbed kT = 0.30+/-0.05 keV emission representing the Galactic Halo, and a power-law component due to the isotropic cosmic X-ray background radiation. The emission measure of the GH component in the SE-claw shows an excess by a factor of ~ 2.5 over the surrounding emission at 2 deg away. We also found a broad excess in the 1.7-4.0 keV count rates across the N-cap after compiling other archival data from Suzaku and Swift. The spectral stacking analysis of the N-cap data indicates the presence of another thermal component with kT = 0.70 (+0.22,-0.11) keV. The temperature of kT ~ 0.3 keV of the Galactic Halo is higher than the ubiquitous value of kT ~ 0.2 keV near the Fermi Bubbles, and can be even higher (~ 0.7 keV). We discuss our findings in the context of bubble-halo interaction.
We present a systematic investigation of the gain properties of a gas electron multiplier (GEM) foil in pure dimethyl ether (DME) at low pressures. The GEM is made from copper- clad liquid crystal polymer insulator (LCP-GEM) designed for space use, a nd is applied to a time projection chamber filled with low-pressure DME gas to observe the linear polarization of cosmic X-rays. We have measured gains of a 100 um-thick LCP-GEM as a function of the voltage between GEM electrodes at various gas pressures ranging from 10 to 190 Torr with 6.4 keV X-rays. The highest gain at 190 Torr is about 2x10^4, while that at 20 Torr is about 500. We find that the pressure and electric-field dependence of the GEM gain is described by the first Townsend coefficient. The energy scale from 4.5 to 8.0 keV is linear with non-linearity of less than 1.4% above 30 Torr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا