ترغب بنشر مسار تعليمي؟ اضغط هنا

184 - Z. Z. Du , H. M. Liu , Y. L. Xie 2015
The Casimir effect is a general phenomenon in physics, which arises when the vacuum fluctuation of an arbitrary field is modified by static or slowly varying boundary. However, its spin version is rarely addressed, mainly due to the fact that a macro scopic boundary in quantum spin systems is hard to define. In this article, we explore the spin Casimir effect induced by the zero-point fluctuation of spin waves in a general non-collinear ordered quantum antiferromagnet. This spin Casimir effect results in a spin torque between local spins and further causes various singular and divergent results in the framework of spin-wave theory, which invalidate the standard $1/S$ expansion procedure. To avoid this dilemma, we develop a self-consistent spin-wave expansion approach, which preserves the spin-wave expansion away from singularities and divergence. A detailed spin-wave analysis of the antiferromagnetic spin-1/2 Heisenberg model on a spatially anisotropic triangular lattice is undertaken within our approach. Our results indicate that the spiral order is only stable in the region $0.5<alpha<1.2$, where $alpha$ is the ratio of the coupling constants. In addition, the instability in the region $1.2<alpha<2$ is owing to the spin Casimir effect instead of the vanishing sublattice magnetization. And this extended spiral instable region may host some quantum disordered phases besides the quantum order by disorder induced Neel phase. Furthermore, our method provides an efficient and convenient tool that can estimate the correct exchange parameters and outline the quantum phase diagrams, which can be useful for experimental fitting processes in frustrated quantum magnets.
197 - H. M. Liu , Y. P. Du , Y. L. Xie 2014
As the first well-documented example of the ferroelectric metal, LiOsO3 has received extensive research attention recently. Using density-functional calculations, we perform a systematic study for LiOsO3. We address the controversy about the depth of the double well in the potential surface, and propose that the ferroelectric transition is order-disorder like. Moreover, we unambiguously demonstrate that the electric screening in this compound is highly anisotropic, and there is still unscreened dipole-dipole interaction in one special direction which results in the long range ferroelectric order despite the metallic nature of LiOsO3.
282 - G. Wu , Y. L. Xie , H. Chen 2009
We synthesized the samples Sr$_{1-x}$Sm$_x$FFeAs with ZrCuSiAs-type structure. These samples were characterized by resistivity and susceptibility. It is found that substitution of rare earth metal for alkaline earth metal in this system suppresses th e anomaly in resistivity and induces superconductivity. Superconductivity at 56 K in nominal composition Sr$_{0.5}$Sm$_{0.5}$FFeAs is realized, indicating that the superconducting transition temperatures in the iron arsenide fluorides can reach as high as that in oxypnictides with the same structure.
131 - G. Wu , H. Chen , Y. L. Xie 2008
We synthesized Sr-doped $La_{0.85}Sr_{0.15}OFeAs$ sample with single phase, and systematically studied the effect of oxygen deficiency in the Sr-doped LaOFeAs system. It is found that substitution of Sr for La indeed induces the hole carrier evidence d by positive thermoelectric power (TEP), but no bulk superconductivity is observed. The superconductivity can be realized by annealing the as-grown sample in vacuum to produce the oxygen deficiency. With increasing the oxygen deficiency, the superconducting transition temperature ($T_c$) increases and maximum $T_c$ reaches about 26 K the same as that in La(O,F)FeAs. TEP dramatically changes from positive to negative in the nonsuperconducting as-grown sample to the superconducting samples with oxygen deficiency. While $R_H$ is always negative for all samples (even for Sr-doped as grown sample). It suggests that the $La_{0.85}Sr_{0.15}O_{1-delta}FeAs$ is still electron-type superconductor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا