ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - Y. Hosotani , K. Oda , T. Ohnuma 2009
An SO(5)xU(1) gauge-Higgs unification model in the Randall-Sundrum warped space with top and bottom quarks is constructed. Additional fermions on the Planck brane make exotic particles heavy by effectively changing boundary conditions of bulk fermion s from those determined by orbifold conditions. Gauge couplings of a top quark multiplet trigger electroweak symmetry breaking by the Hosotani mechanism, simultaneously giving a top quark the observed mass. The bottom quark mass is generated by combination of brane interactions and the Hosotani mechanism, where only one ratio of brane masses is relevant when the scale of brane masses is much larger than the Kaluza-Klein scale (sim 1.5 TeV). The Higgs mass is predicted to be 49.9 (53.5) GeV for the warp factor 10^{15} (10^{17}). The Wilson line phase turns out pi/2 and the Higgs couplings to W and Z vanish so that the LEP2 bound for the Higgs mass is evaded. In the flat spacetime limit the electroweak symmetry is unbroken.
The zero mode of an extra-dimensional component of gauge potentials serves as a 4D Higgs field in the gauge-Higgs unification. We examine QED on $M^4 times S^1$ and determine the mass and potential of a 4D Higgs field (the $A_5$ component) at the two loop level with gauge invariant reguralization. It is seen that the mass is free from divergences and independent of the renormalization scheme.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا