ترغب بنشر مسار تعليمي؟ اضغط هنا

Using pulsed laser deposition and a unique fast quenching method, we have prepared SrCoOx epitaxial films on SiTiO3 substrates. As electrochemical oxidation increases the oxygen content from x = 2.75 to 3.0, the films tend to favor the discrete magne tic phases seen in bulk samples for the homologous series SrCoO(3-n/8) (n = 0, 1, 2). Unlike bulk samples, 200nm thick films remain single phase throughout the oxidation cycle. 300 nm films can show two simultaneous phases during deoxidation. These results are attributed to finite thickness effects and imply the formation of ordered regions larger than approximately 300 nm.
We have studied the effect of tensile strain on the superconductivity in FeSe films. 50 nm, 100 nm, and 200 nm FeSe films were grown on MgO, SrTiO$_3$, and LaAlO$_3$ substrates by using a pulsed laser deposition technique. X-ray diffraction analysis showed that the tetragonal phase is dominant in all of our FeSe films. The 50 nm FeSe films on MgO and SrTiO$_3$ are under tensile strain, while the 50 nm FeSe film on LaAlO$_3$ and the other thick FeSe films are unstrained. Superconducting transitions have been observed in unstrained FeSe films with T$_{onset}$ $approx$ 8 K, which is close to the bulk value. However, no sign of superconductivity has been observed in FeSe films under tensile strain down to 5 K. There is evidence to show that tensile strain suppresses superconductivity in FeSe films.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا