ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a magneto-infrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe$_5$. We observe clear transitions between Landau levels and their further splitting under magnetic field. Both the sequence of transiti ons and their field dependence follow quantitatively the relation expected for 3D emph{massless} Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe$_5$ is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides a direct and bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizeable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under current magnetic field configuration.
90 - C. Y. Guo , Y. Chen , M. Smidman 2015
We present a pressure study of the electrical resistivity, AC magnetic susceptibility and powder x-ray diffraction (XRD) of the newly discovered BiS$_2$-based superconductor EuBiS$_2$F. At ambient pressure, EuBiS$_2$F shows an anomaly in the resistiv ity at around $T_0approx 280$ K and a superconducting transition at $T_capprox 0.3$ K. Upon applying hydrostatic pressure, there is little change in $T_0$ but the amplitude of the resistive anomaly is suppressed, whereas there is a dramatic enhancement of $T_c$ from 0.3 K to about 8.6 K at a critical pressure of $p_c$ $approx{1.4}$ GPa. XRD measurements confirm that this enhancement of $T_c$ coincides with a structural phase transition from a tetragonal phase ($P4/nmm$) to a monoclinic phase ($P2_1$/m), which is similar to that observed in isostructural LaO$_{0.5}$F$_{0.5}$BiS$_2$. Our results suggest the presence of two different superconducting phases with distinct crystal structures in EuBiS$_2$F, which may be a general property of this family of BiS$_2$-based superconductors.
Three dimensional (3D) topological Dirac materials are under intensive study recently. The layered compound ZrTe$_5$ has been suggested to be one of them by transport and ARPES experiments. Here, we perform infrared reflectivity measurement to invest igate the underlying physics of this material. The derived optical conductivity exhibits linear increasing with frequency below normal interband transitions, which provides the first optical spectroscopic proof of a 3D Dirac semimetal. Apart from that, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be associated with the consequence of lattice parameter shrinking. In addition, an extremely sharp peak shows up in the frequency dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.
149 - L. Jiao , Y. Chen , Y. Kohama 2015
Conventional, thermally-driven continuous phase transitions are described by universal critical behaviour that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-dri ven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behaviour remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (B$_{c0}simeq$ 50 T) in the heavy-fermion metal CeRhIn$_5$. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B$_0^*simeq$ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn$_5$ suggest that the Fermi-surface change at B$_0^*$ is associated with a localized to itinerant transition of the Ce-4f electrons in CeRhIn$_5$. Taken in conjunction with pressure data, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn$_5$, a significant step towards the derivation of a universal phase diagram for QCPs.
124 - T. Yu , T. A. Tyson , H. Y. Chen 2014
Detailed structural measurements were conducted on a new perovskite, ScMnO3, and on orthorhombic LuMnO3. Complementary density functional theory (DFT) calculations were carried out, and predict that ScMnO3 possesses E-phase magnetic order at low temp erature with displacements of the Mn sites (relative to the high temperature state) of ~0.07 {AA}, compared to ~ 0.04 {AA} predicted for LuMnO3. However, detailed local, intermediate and long-range structural measurements by x-ray pair distribution function analysis, single crystal x-ray diffraction and x-ray absorption spectroscopy, find no local or long- range distortions on crossing into the low temperature E-phase of the magnetically ordered state. The measurements place upper limits on any structural changes to be at most one order of magnitude lower than density functional theory predictions and suggest that this theoretical approach does not properly account for the spin-lattice coupling in these oxides and may possibly predict the incorrect magnetic order at low temperatures. The results suggest that the electronic contribution to the electrical polarization dominates and should be properly treated in theoretical models.
159 - L. Jiao , J. L. Zhang , Y. Chen 2014
We report measurements of London penetration depth $lambda(T)$ for the noncentrosymmetric superconductor BiPd by using a tunnel diode oscillator. Pronounced anisotropic behavior is observed in the low-temperature penetration depth; the in-plane penet ration depth $lambda_{ac}(T)$ follows an exponential decrease, but the interplane penetration depth $lambda_b(T)$ shows power-law-type behavior. The superfluid density $rho_s(T)$, converted from the penetration depth $lambda(T)$, is best fitted by an anisotropic two-band BCS model. We argue that such a complex order parameter is attributed to the admixture of spin-singlet and spin-triplet pairing states as a result of antisymmetric spin-orbit coupling in BiPd.
We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the formation of a large energy gap and removes most part of the Fermi surfaces. But the compound remains metallic with residual itinerant carriers. Below 42 K, another density wave phase transition with smaller energy gap scale occurs and drives the compound into semiconducting ground state. These experiments thus enable us to shed light on the complex electronic structure in the titanium oxypnictides.
74 - Z. Wu , Y. Chen , G. Li 2014
We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed at spacecraft STEREO-B, the two CIRs were separa ted by less than 5 days. In contrast to other CIR events, the fluxes of energetic ions and electrons in this event reached their maxima between the trailing-edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (Br) reversed its sense and the anisotropy of the flux also changed from sunward to anti-sunward between the two CIRs. Furthermore, there was an extended period of counter-streaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained for ACE and STEREO-A. We conjecture that these observations were due to a U-shape large scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic field topology may have formed due to magnetic reconnection in the upper corona.
89 - R. Y. Chen , B. F. Hu , T. Dong 2014
Rare-earth tri-tellurium RTe$_3$ is a typical quasi-two dimensional system which exhibits obvious charge density wave (CDW) orders. So far, RTe$_3$ with heavier R ions (Dy, Ho, Er and Tm) are believed to experience two CDW phase transitions, while th e lighter ones only hold one. TbTe$_3$ is claimed to belong to the latter. However in this work we present evidences that TbTe$_3$ also possesses more than one CDW order. Aside from the one at 336 K, which was extensively studied and reported to be driven by imperfect Fermi surface nesting with a wave vector $q=(2/7 c^*)$, a new CDW energy gap (260 meV) develops at around 165 K, revealed by both infrared reflectivity spectroscopy and ultrafast pump-probe spectroscopy. More intriguingly, the origin of this energy gap is different from the second CDW order in the heavier R ions-based compounds RTe$_3$ (R=Dy, Ho, Er and Tm).
100 - Y.B. Yang , Y. Chen , A. Alexandru 2014
We take a new approach to determine the scale parameter $r_0$, the physical masses of strange and charm quarks through a global fit which incorporates continuum extrapolation, chiral extrapolation and quark mass interpolation to the lattice data. The charmonium and charm-strange meson spectrum are calculated with overlap valence quarks on $2+1$-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaboration. We use the masses of $D_s$, $D_s^*$ and $J/psi$ as inputs and obtain $m_c^{overline{rm MS}}(2,{rm GeV})=1.110(24),{rm GeV}$, $m_s^{overline{rm MS}}(2,{rm GeV})=0.104(9),{rm GeV}$ and $r_0=0.458(11),{rm fm}$. Subsequently, the hyperfine-splitting of charmonium and $f_{D_s}$ are predicted to be $112(5),{rm MeV}$ and $254(5),{rm MeV}$, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا