ترغب بنشر مسار تعليمي؟ اضغط هنا

An experiment demonstrating single-pixel single-arm complementary compressive microscopic ghost imaging based on a digital micromirror device (DMD) has been performed. To solve the difficulty of projecting speckles or modulated light patterns onto ti ny biological objects, we instead focus the microscopic image onto the DMD. With this system, we have successfully obtained a magnified image of micron-sized objects illuminated by the microscopes own incandescent lamp. The image quality of our scheme is more than an order of magnitude better than that obtained by conventional compressed sensing with the same total sampling rate, and moreover, the system is robust against intensity instabilities of the light source and may be used under very weak light conditions. Since only one reflection direction of the DMD is used, the other reflection arm is left open for future infrared light sampling. This represents a big step forward toward the practical application of compressive microscopic ghost imaging in the biological and material science fields.
In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM of vectorial vortex can be attributed to two parts: the azimuthal gradient of Pancharatnam phase and the product of the azimuthal gradient of orientation angle of SOP and relevant solid angle on the Poincar{e} sphere. With our formula, a geometrical description for OAM of light beams can be achieved under the framework of the traditional Poincar{e} sphere. Numerical simulations for two types of vectorial vortices have been carried on to confirm our presented formula and demonstrate the geometrical description of OAM. Furthermore, the finding will pave the way for precise characterization of OAM charge of vectorial vortices.
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been u sed solely for optimizing the parameters of $Lambda$CDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between {it competing} models. The currently available sample indicates a likelihood of $sim 70-80%$ that the $R_{rm h}=ct$ Universe is the correct cosmology versus $sim 20-30%$ for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a $sim 99.7%$ confidence level. We find that if the real cosmology is $Lambda$CDM, a sample of $sim 150$ time-delay lenses would be sufficient to rule out $R_{rm h}=ct$ at this level of accuracy, while $sim 1,000$ time-delay lenses would be required to rule out $Lambda$CDM if the real Universe is instead $R_{rm h}=ct$. This difference in required sample size reflects the greater number of free parameters available to fit the data with $Lambda$CDM.
We present a robust imaging method based on time-correspondence imaging and normalized ghost imaging (GI) that sets two thresholds to select the reference frame exposures for image reconstruction. This double-threshold time-correspondence imaging pro tocol always gives better quality and signal-to-noise ratio than previous GI schemes, and is insensitive to surrounding noise. Moreover, only simple add and minus operations are required while less data storage space and computing time are consumed, thus faster imaging speeds are attainable. The protocol offers a general approach applicable to all GI techniques, and marks a further step forward towards real-time practical applications of correlation imaging.
GRB 100418A is a long burst at z=0.624 without detection of any associated supernova (SN). Its lightcurves in both the prompt and afterglow phases are similar to GRB 060614, a nearby long GRB without an associated SN. We analyze the observational dat a of this event and discuss the possible origins of its multi-wavelength emission. We show that its joint lightcurve at 1 keV derived from Swift BAT and XRT observations is composed of two distinguished components. The first component, whose spectrum is extremely soft (Gamma = 4.32), ends with a steep decay segment, indicating the internal origin of this component. The second component is a slowly-rising, broad bump which peaks at ~10^5 seconds post the BAT trigger. Assuming that the late bump is due to onset of the afterglow, we derive the initial Lorentz factor (Gamma_0) of the GRB fireball and find that it significantly deviates from the relation between the Gamma_0 and Eiso of typical GRBs. We also check whether it follows the same anti-correlation between X-ray luminosity and the break time observed in the shallow decay phase of many typical GRBs, which is usually regarded as a signal of late energy injection from the GRB central engine. However, we find that it does not obey this correlation. We propose that the late bump could be contributed by a two-component jet. We fit the second component with an off-axis jet model for a constant medium density and find the late bump can be represented by the model. The derived jet half-opening angle is 0.30 rad and the viewing angle is 0.315 rad. The medium density is 0.05 cm^-3, possibly suggesting that it may be from a merger of compact stars. The similarity between GRBs 060614 and 100418A may indicate that the two GRBs are from the same population and the late bump observed in the two GRBs may be a signal of a two-component jet powered by the GRB central engine.
Long-lived high-energy (>100MeV) emission, a common feature of most Fermi-LAT detected gamma-ray burst, is detected up to sim 10^2 s in the short GRB 090510. We study the origin of this long-lived high-energy emission, using broad-band observations i ncluding X-ray and optical data. We confirm that the late > 100 MeV, X-ray and optical emission can be naturally explained via synchrotron emission from an adiabatic forward shock propagating into a homogeneous ambient medium with low number density. The Klein-Nishina effects are found to be significant, and effects due to jet spreading and magnetic field amplification in the shock appear to be required. Under the constraints from the low-energy observations, the adiabatic forward shock synchrotron emission is consistent with the later-time (t>2s) high-energy emission, but falls below the early-time (t < 2s) high energy emission. Thus we argue that an extra high energy component is needed at early times. A standard reverse shock origin is found to be inconsistent with this extra component. Therefore, we attribute the early part of the high-energy emission (t< 2s) to the prompt component, and the long-lived high energy emission (t>2s) to the adiabatic forward shock synchrotron afterglow radiation. This avoids the requirement for an extremely high initial Lorentz factor.
99 - Dirk Grupe 2009
We report on 5 Chandra observations of the X-ray afterglow of the Gamma-Ray Burst GRB 060729 performed between 2007 March and 2008 May. In all five observations the afterglow is clearly detected. The last Chandra pointing was performed on 2008-May-04 , 642 days after the burst - the latest detection of a GRB X-ray afterglow ever. A reanalysis of the Swift XRT light curve together with the three detections by Chandra in 2007 reveals a break at about 1.0 Ms after the burst with a slight steepening of the decay slope from alpha = 1.32 to 1.61. This break coincides with a significant hardening of the X-ray spectrum, consistent with a cooling break in the wind medium scenario, in which the cooling frequency of the afterglow crosses the X-ray band. The last two Chandra observations in 2007 December and 2008 May provide evidence for another break at about one year after the burst. If interpreted as a jet break, this late-time break implies a jet half opening angle of about 14 degrees for a wind medium. Alternatively, this final break may have a spectral origin, in which case no jet break has been observed and the half-opening angle of the jet of GRB 060729 must be larger than about 15 degrees for a wind medium. We compare the X-ray afterglow of GRB 060729 in a wind environment with other bright X-ray afterglows, in particular GRBs 061121 and 080319B, and discuss why the X-ray afterglow of GRB 060729 is such an exceptionally long-lasting event.
We have operated a quantum point contact (QPC) charge detector in a radio frequency (RF) mode that allows fast charge detection in a bandwidth of tens of megahertz. We find that the charge sensitivity of the RF-QPC is limited not by the noise of a se condary amplifier, but by non-equilibrium noise f the QPC itself. We have performed frequency-resolved measurements of the noise within a 10 MHz bandwidth around our carrier wave. When averaged over our bandwidth, we find that the noise is in good agreement with the theory of photon-assisted shot noise. Our measurements also reveal strong frequency dependence of the noise, asymmetry with respect to the carrier wave, the appearance of sharp local maxima that are correlated with mechanical degrees of freedom in the sample, and noise suppression indicative of many-body physics near the 0.7 structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا