ترغب بنشر مسار تعليمي؟ اضغط هنا

Explainable AI has attracted much research attention in recent years with feature attribution algorithms, which compute feature importance in predictions, becoming increasingly popular. However, there is little analysis of the validity of these algor ithms as there is no ground truth in the existing datasets to validate their correctness. In this work, we develop a method to quantitatively evaluate the correctness of XAI algorithms by creating datasets with known explanation ground truth. To this end, we focus on the binary classification problems. String datasets are constructed using formal language derived from a grammar. A string is positive if and only if a certain property is fulfilled. Symbols serving as explanation ground truth in a positive string are part of an explanation if and only if they contributes to fulfilling the property. Two popular feature attribution explainers, Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), are used in our experiments.We show that: (1) classification accuracy is positively correlated with explanation accuracy; (2) SHAP provides more accurate explanations than LIME; (3) explanation accuracy is negatively correlated with dataset complexity.
Since COVID-19 was first identified in December 2019, various public health interventions have been implemented across the world. As different measures are implemented at different countries at different times, we conduct an assessment of the relativ e effectiveness of the measures implemented in 18 countries and regions using data from 22/01/2020 to 02/04/2020. We compute the top one and two measures that are most effective for the countries and regions studied during the period. Two Explainable AI techniques, SHAP and ECPI, are used in our study; such that we construct (machine learning) models for predicting the instantaneous reproduction number ($R_t$) and use the models as surrogates to the real world and inputs that the greatest influence to our models are seen as measures that are most effective. Across-the-board, city lockdown and contact tracing are the two most effective measures. For ensuring $R_t<1$, public wearing face masks is also important. Mass testing alone is not the most effective measure although when paired with other measures, it can be effective. Warm temperature helps for reducing the transmission.
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of predict ion accuracy as well as transparent explanations are valuable. In this work, we present an explainable classification method. Our method works by first constructing a symbolic Knowledge Base from the training data, and then performing probabilistic inferences on such Knowledge Base with linear programming. Our approach achieves a level of learning performance comparable to that of traditional classifiers such as random forests, support vector machines and neural networks. It identifies decisive features that are responsible for a classification as explanations and produces results similar to the ones found by SHAP, a state of the art Shapley Value based method. Our algorithms perform well on a range of synthetic and non-synthetic data sets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا