ترغب بنشر مسار تعليمي؟ اضغط هنا

In transformation optics, the space transformation is viewed as the deformation of a material. The permittivity and permeability tensors in the transformed space are found to correlate with the deformation field of the material. By solving the Laplac es equation, which describes how the material will deform during a transformation, we can design electromagnetic cloaks with arbitrary shapes if the boundary conditions of the cloak are considered. As examples, the material parameters of the spherical and elliptical cylindrical cloaks are derived based on the analytical solutions of the Laplaces equation. For cloaks with irregular shapes, the material parameters of the transformation medium are determined numerically by solving the Laplaces equation. Full-wave simulations based on the Maxwells equations validate the designed cloaks. The proposed method can be easily extended to design other transformation materials for electromagnetic and acoustic wave phenomena.
We propose a general method to evaluate the material parameters for arbitrary shape transformation media. By solving the original coordinates in the transformed region via Laplaces equations, we can obtain the deformation field numerically, in turn t he material properties of the devices to be designed such as cloaks, rotators or concentrators with arbitrary shape. Devices which have non-fixed outer boundaries, such as beam guider, can also be designed by the proposed method. Examples with full wave simulation are given for illustration. In the end, wave velocity and energy change in the transformation media are discussed with help of the deformation view.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا