ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - Yang Zhang , Xin Yu , Xiaobo Lu 2021
In this paper, we study the task of hallucinating an authentic high-resolution (HR) face from an occluded thumbnail. We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN, which exploits facia l geometry priors to replenish and upsample (8*) the occluded and tiny faces (16*16 pixels). Pro-UIGAN iteratively (1) estimates facial geometry priors for low-resolution (LR) faces and (2) acquires non-occluded HR face images under the guidance of the estimated priors. Our multi-stage hallucination network super-resolves and inpaints occluded LR faces in a coarse-to-fine manner, thus reducing unwanted blurriness and artifacts significantly. Specifically, we design a novel cross-modal transformer module for facial priors estimation, in which an input face and its landmark features are formulated as queries and keys, respectively. Such a design encourages joint feature learning across the input facial and landmark features, and deep feature correspondences will be discovered by attention. Thus, facial appearance features and facial geometry priors are learned in a mutual promotion manner. Extensive experiments demonstrate that our Pro-UIGAN achieves visually pleasing HR faces, reaching superior performance in downstream tasks, i.e., face alignment, face parsing, face recognition and expression classification, compared with other state-of-the-art (SotA) methods.
The propagation of Dirac fermions in graphene through a long-period periodic potential would result in a band folding together with the emergence of a series of cloned Dirac points (DPs). In highly aligned graphene/hexagonal boron nitride (G/hBN) het erostructures, the lattice mismatch between the two atomic crystals generates a unique kind of periodic structure known as a moire superlattice. Of particular interests is the emergent phenomena related to the reconstructed band-structure of graphene, such as the Hofstadter butterfly, topological currents, gate dependent pseudospin mixing, and ballistic miniband conduction. However, most studies so far have been limited to the lower-order minibands, e.g. the 1st and 2nd minibands counted from charge neutrality, and consequently the fundamental nature of the reconstructed higher-order miniband spectra still remains largely unknown. Here we report on probing the higher-order minibands of precisely aligned graphene moire superlattices by transport spectroscopy. Using dual electrostatic gating, the edges of these high-order minibands, i.e. the 3rd and 4th minibands, can be reached. Interestingly, we have observed interband Landau level (LL) crossinginducing gap closures in a multiband magneto-transport regime, which originates from band overlap between the 2nd and 3rd minibands. As observed high-order minibands and LL reconstruction qualitatively match our simulated results. Our findings highlight the synergistic effect of minibands in transport, thus presenting a new opportunity for graphene electronic devices.
Flat-bands in magic angle twisted bilayer graphene (MATBG) have recently emerged as a rich platform to explore strong correlations, superconductivity and mag-netism. However, the phases of MATBG in magnetic field, and what they reveal about the zero- field phase diagram remain relatively unchartered. Here we use magneto-transport and Hall measurements to reveal a rich sequence of wedge-like regions of quantized Hall conductance with Chern numbers C = +(-)1, +(-)2, +(-)3, +(-)4 which nucleate from integer fillings of the moire unit cell v = +(-)3, +(-)2, +(-)1, 0 correspondingly. We interpret these phases as spin and valley polarized Chern insulators, equivalent to quantum Hall ferro-magnets. The exact sequence and correspondence of Chern numbers and filling factors suggest that these states are driven directly by electronic interactions which specifically break time-reversal symmetry in the system. We further study quantum magneto-oscillation in the yet unexplored higher energy dispersive bands with a Rashba-like dis-persion. Analysis of Landau level crossings enables a parameter-free comparison to a newly derived magic series of level crossings in magnetic field and provides constraints on the parameters w0 and w1 of the Bistritzer-MacDonald MATBG Hamiltonian. Over-all, our data provides direct insights into the complex nature of symmetry breaking in MATBG and allows for quantitative tests of the proposed microscopic scenarios for its electronic phases.
Transport experiments in twisted bilayer graphene revealed multiple superconducting domes separated by correlated insulating states. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moire superlattice as it was predicted by band structure calculations. Evidence for such a flat band comes from local tunneling spectroscopy and electronic compressibility measurements, reporting two or more sharp peaks in the density of states that may be associated with closely spaced van Hove singularities. Direct momentum resolved measurements proved difficult though. Here, we combine different imaging techniques and angle resolved photoemission with simultaneous real and momentum space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with homogeneous twist angle that support a flat band with spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands which show multiple moire hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
The predicted formation of moire superlattices leading to confined excitonic states in heterostructures formed by stacking two lattice mismatched transition metal dichalcogenide (TMD) monolayers was recently experimentally confirmed. Such periodic po tential in TMD heterostructure functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). Understanding the transport of excitons under such condition is essential to establish the material system as a next generation device platform. In this work, we experimentally quantify the diffusion barrier experienced by the interlayer excitons in a hexagonal boron nitride (hBN) encapsulated, molybdenum diselenide tungsten/diselenide (MoSe2/WSe2) heterostructure by studying the exciton transport at various temperatures.
The coexistence of superconducting and correlated insulating states in magic-angle twisted bilayer graphene prompts fascinating questions about the relationship of these orders. Independent control of the microscopic mechanisms governing these phases could help uncover their individual roles and shed light on their intricate interplay. Here we report on direct tuning of electronic interactions in this system by changing its separation from a metallic screening layer. We observe quenching of correlated insula-tors in devices with screening layer separations that are smaller than a typical Wannier orbital size of 15nm, and with the twist angles slightly deviating from the magic value 1.10 plus(minus) 0.05 degrees. Upon extinction of the insulating orders, the vacated phase space is taken over by superconducting domes that feature critical temperatures comparable to those in the devices with strong insulators. In addition, we find that insulators at half-filling can reappear in small out-of-plane magnetic fields of 0.4 T, giving rise to quantized Hall states with a Chern number of 2. Our study suggests reexamination of the often-assumed mother-child relation between the insulating and superconducting phases in moire graphene, and illustrates a new approach to directly probe microscopic mechanisms of superconductivity in strongly-correlated systems.
Superconductivity often occurs close to broken-symmetry parent states and is especially common in doped magnetic insulators. When twisted close to a magic relative orientation angle near 1 degree, bilayer graphene has flat moire superlattice miniband s that have emerged as a rich and highly tunable source of strong correlation physics, notably the appearance of superconductivity close to interaction-induced insulating states. Here we report on the fabrication of bilayer graphene devices with exceptionally uniform twist angles. We show that the reduction in twist angle disorder reveals insulating states at all integer occupancies of the four-fold spin/valley degenerate flat conduction and valence bands, i.e. at moire band filling factors nu = 0, +(-) 1, +(-) 2, +(-) 3, and superconductivity below critical temperatures as high as 3 K close to - 2 filling. We also observe three new superconducting domes at much lower temperatures close to the nu = 0 and nu = +(-) 1 insulating states. Interestingly, at nu = +(-) 1 we find states with non-zero Chern numbers. For nu = - 1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field above 3.6 tesla is applied, consistent with a field driven phase transition. Our study shows that symmetry-broken states, interaction driven insulators, and superconducting domes are common across the entire moire flat bands, including near charge neutrality.
Graphene/h-BN has emerged as a model van der Waals heterostructure, and the band structure engineering by the superlattice potential has led to various novel quantum phenomena including the self-similar Hofstadter butterfly states. Although newly gen erated second generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, so far fundamental knowledge of SDCs in such heterostructure, e.g. locations and dispersion of SDCs, the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. Here we report first direct experimental results on the dispersion of SDCs in 0$^circ$ aligned graphene/h-BN heterostructure using angle-resolved photoemission spectroscopy. Our data reveal unambiguously SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of $approx$ 100 meV and $approx$ 160 meV are observed at the SDCs and the original graphene Dirac cone respectively. Our work highlights the important role of a strong inversion symmetry breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا